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Abstract. A subgroup H of a finite group G is said to be SS-supplemented in G if there
exists a subgroup K of G such that G = HK and H ∩ K is S-quasinormal in K. We
analyze how certain properties of SS-supplemented subgroups influence the structure of
finite groups. Our results improve and generalize several recent results.
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1. Introduction

All groups considered in this paper are finite and G always denotes a finite group.

Our notation and terminology are standard and the reader is referred to [4], [8].

Recall that a subgroupH of a groupG is said to be S-quasinormal in G ifH permutes

with every Sylow subgroup of G. This concept was introduced by Kegel and Deskins

in 1962, see [10]. In 2012, Guo and Lu gave the definition of SS-supplemented

subgroups.

Definition 1.1 ([6], Definition 2.1). A subgroup H of a group G is called

SS-supplemented in G if there exists a subgroupK ofG such that G = HK andH∩K

is S-quasinormal in K. In this case, we say that K is an SS-supplement of H in G.

Theorem 1.2 ([6], Theorem 3.3). A group G is solvable if and only if every

maximal subgroup M of G has a subnormal SS-supplement in G.
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The research on the SS-supplemented subgroups of a given group still continues

and many related results have been recently obtained, see [11], [12]. It has been

proved that the SS-supplemented subgroups are suitable for describing the structure

of groups. The aim of this paper is to give a generalization of the above mentioned

theorems. We investigate the solvability of some normal subgroup by using certain

maximal subgroups, which is a generalization of the results known. We also study

the structure of groups based on the assumption that every subgroup of P ∩P x∩GNp

of order p or 4 (if p = 2) is SS-supplemented in G, where x ∈ G \ NG(P ) and GNp

is the p-nilpotent residual of G. Some results for a group to be p-nilpotent and

supersolvable are obtained and many known results are generalized.

Recall that a formation F is a class of groups which is closed under taking epi-

morphic images and such that every group G has a smallest normal subgroup with

quotient in F. This subgroup is called the F-residual of G and denoted by GF.

Throughout this paper, Np and N denote the classes of p-nilpotent groups and

nilpotent groups, respectively.

2. Preliminaries

In this section we present some lemmas, which are required in the proofs of our

main results.

Lemma 2.1 ([6], Lemma 2.4). Let H be an SS-supplemented subgroup of

a group G. Then, the following statements hold:

(1) If M is a subgroup of G and H 6 M , then H is SS-supplemented in M .

(2) If N is a normal subgroup of G and N 6 H , then H/N is SS-supplemented

in G/N .

(3) Let π be a set of primes. If H is a π-subgroup of G and N is a normal

π′-subgroup of G, then HN/N is SS-supplemented in G/N .

The following two lemmas are known results for S-quasinormal subgroups of a given

group G.

Lemma 2.2 ([10]). Let H be a subgroup of a group G. If H is S-quasinormal

in G, then H is subnormal in G.

Lemma 2.3 ([16], Lemma A). IfH is a p-subgroup of a group G for some prime p,

then H is S-quasinormal in G if and only if Op(G) 6 NG(H).

Lemma 2.4 ([4], Lemma 14.3). If A is a subnormal subgroup of a group G and B

is a minimal normal subgroup of G, then B 6 NG(A).
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Lemma 2.5. Let P be a Sylow p-subgroup of a groupG andH a normal subgroup

of G. If N is a normal p′-subgroup of G, then HN ∩PN ∩P xN = (H ∩P ∩P xn)N

for some n ∈ N , where x ∈ G \NG(P ).

P r o o f. From Sylow’s theorem, we haveHN∩PN = (HN∩P )N = (H∩P )N . So

HN∩PN∩P xN = (H∩P∩P xN)N . Take P0 = H∩P∩P xN . Then P0 is contained in

a Sylow p-subgroup of P xN . Thus by Sylow’s theorem again there exists an element n

in N such that P0 6 P xn. It follows that P0 = H∩P ∩P xN > H∩P ∩P xn > P0 and

hence P0 = H∩P ∩P xn. This implies that HN ∩PN ∩P xN = (H ∩P ∩P xn)N . �

A 2-group is called quaternion-free if it has no section isomorphic to the quaternion

group of order 8.

Lemma 2.6 ([5], Theorem 2.8). If a solvable group G has a Sylow 2-subgroup P

which is quaternion-free, then P ∩ Z(G) ∩GN = 1.

Lemma 2.7. Let H be a subgroup of a group G, then HNp 6 GNp .

P r o o f. Since HGNp/GNp 6 G/GNp and G/GNp is p-nilpotent, we have that

H/(H ∩GNp) is p-nilpotent and so HNp 6 H ∩GNp , as desired. �

Lemma 2.8 ([1], Lemma 2). Let F be a saturated formation. Assume that G is

a non-F-group and there exists a maximal subgroup M of G such that M ∈ F and

G = MF (G), where F (G) is the Fitting subgroup of G. Then

(1) GF/(GF)′ is a chief factor of G;

(2) GF is a p-group for some prime p;

(3) GF has exponent p if p > 2 and exponent is at most 4 if p = 2;

(4) GF is either an elementary abelian group or (GF)′ = Z(GF) = Φ(GF) is an

elementary abelian group.

Lemma 2.9 ([17], Lemma 2.16). Let F be a saturated formation containing all

supersolvable groups andG be a group with a normal subgroupE such thatG/E ∈ F.

If E is cyclic, then G ∈ F.

Let H be a normal subgroup of a group G. We define the following families of

subgroups:

M(G) = {M |M ⋖ G},

Mpc(G) = {M |M ∈ M(G), |G : M |p = 1 and |G : M | is composite},

Mpcn(G) = {M |M ∈ M(G), NG(P ) 6 M for a Sylow p-subgroup P of G, M is

nonnilpotent and |G : M | is composite},

MH(G) = {M |M ∈ M(G) and H � M}.
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3. Main results

In this section, we firstly study the solvability of a normal subgroupH of a groupG

when some subgroups are assumed to be SS-supplemented subgroups of G.

Theorem 3.1. Let H be a normal subgroup of a group G and p the largest prime

dividing the order of G. If every maximal subgroup M of G in Mpc(G) ∩ MH(G)

has a subnormal SS-supplement in G, then H is solvable.

P r o o f. If Mpc(G) ∩MH(G) = ∅, then we claim that H is solvable. In fact, if

Mpc(G) = ∅, by [13], Theorem 8, G is solvable and so is H . IfMpc(G) 6= ∅, then H is

contained in every maximal subgroupM of G inMpc(G). Applying [13], Theorem 8

again, H is solvable. This proves our claim.

Now we may assume that Mpc(G) ∩ MH(G) 6= ∅. Let N be a minimal nor-

mal subgroup of G, and let M/N be a maximal subgroup of G = G/N with

M/N ∈ Mpc(G) ∩ MH(G). Then M ∈ Mpc(G) ∩ MH(G). Furthermore, M/N

has a subnormal SS-supplement in G/N by Lemma 2.1. It is clear that (G,H) satis-

fies the hypotheses of the theorem and so H is solvable by induction. If N � H , then

H ∼= H is solvable, as desired. Hence, we may assume that N 6 H , and it follows

that H/N is solvable. If G has two different minimal normal subgroups N1 and N2,

then both H/N1 and H/N2 are solvable and so is H/(N1 ∩ N2). This implies that

the group H is solvable. Hence we may assume that G has a unique minimal normal

subgroup N .

Suppose that N is nonsolvable. Let q be the largest prime dividing the order of N

and Q a Sylow q-subgroup of N . Then G = NG(Q)N by the Frattini argument. So

there exists a maximal subgroup M of G which contains NG(Q), but N � M . By

hypothesis, p > q. If p > q, it is clear that |G : M |p = |N : M ∩ N |p=1. If p = q,

then NG(Q) contains a Sylow p-subgroup of G. Thus, we conclude that |G : M |p = 1

in these two cases. If |G : M | = r for some prime r, then, since MG = 1, we have

that G is isomorphic to a subgroup of the symmetric group Sr of degree r. This

implies that |G| | r!, which is a contradiction as p is not a divisor of r!. Hence, we

conclude that M ∈ Mpc(G) ∩MH(G).

By our hypotheses, there exists a subnormal subgroup K of G such that G = MK

and M ∩K is S-quasinormal in K. Since K is subnormal in G, Lemma 2.2 implies

that M ∩ K is subnormal in G. We claim that M ∩ K = 1. Otherwise, we may

take a minimal subnormal subgroup L of G contained in M ∩K. Since L ∩N E L,

either L ∩N = 1 or L 6 N . If L ∩N = 1, then from Lemma 2.4 NL = N × L and

L 6 CG(N)=1, a contradiction. Suppose L 6 N . We have LG = LNM = LM 6

MG = 1, which implies L = 1, a contradiction. Therefore M ∩ K = 1. By using

the same arguments, we can similarly prove that all minimal subnormal subgroups
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of G are contained in N . Let N = N1 × . . . × Nr, where each Ni is isomorphic to

a fixed nonabelian simple group. It follows that N1, . . . , Nr coincide with all minimal

subnormal subgroups of G. Without loss of generality, we may assume that N1 6 K.

Then a prime p exists such that p divides |K| = |G : M |. By [2], Lemma 3, we can

see that N is solvable, this is a contradiction. The proof is completed. �

From Theorem 3.1, we have the following corollary.

Corollary 3.2. Let p be the largest prime dividing the order of a groupG. ThenG

is solvable if and only if every maximal subgroupM of G inMpc(G) has a subnormal

SS-supplement in G.

P r o o f. From Theorem 1.2, only the sufficiency requires a proof. In fact, let

G = H in Theorem 3.1. Then we have the corollary. �

Remark 3.3. In Theorem 3.1, the group G is not necessary solvable. For ex-

ample: Let L, H be the alternating groups of degree 5 and 4, respectively, and let

G = L×H . Suppose that M = L× C3, where C3 is a cyclic group of order 3 of H .

ThenM is a maximal subgroup of G. It is clear that H � M and |G : M | = 4. Thus

M ∈ Mpc(G)∩MH (G) and we can also see thatMpc(G)∩MH(G) = {Mg : g ∈ G}.

Furthermore, it is easy to see that G = MK4 and M ∩K4 is S-quasinormal in K4,

where K4 is the Klein four group contained in H . That is, M has a subnormal

SS-supplement in G. However, G is not solvable.

Theorem 3.4. Let H be a normal subgroup of a group G and p the largest prime

dividing the order of G. If every maximal subgroup M of G in Mpcn(G) ∩MH(G)

has a subnormal SS-supplement in G, then H is p-solvable.

P r o o f. If Mpcn(G) ∩MH(G) = ∅, then we can see that H is p-solvable by [7],

Lemma 2.4. Now, we may assume that Mpcn(G) ∩MH(G) 6= ∅. Let P ∈ Sylp(G).

If P is normal in G, then G is certainly p-solvable and so is H . So we may assume

that NG(P ) < G.

Let N be a minimal normal subgroup of G. It is clear that G/N satisfies the hy-

potheses of the theorem for the normal subgroup HN/N and so HN/N is p-solvable

by induction. By a routine argument, we can assume that N is contained in H andN

is the unique minimal normal subgroup of G.

Suppose that N is not p-solvable. Then p is a divisor of the order of N . We know

that N ∩P ∈ Sylp(N) and P ∩N is not a normal subgroup of N . By the Frattini ar-

gument, we have that G = NG(P ∩N)N . So there exists a maximal subgroupM of G

which contains NG(P ∩N) and M � N . It is clear that NG(P ) 6 M . If |G : M | = q

is a prime, then by Sylow’s theorem, we have q = 1 + kp and q | |N |. This con-

tradicts p being the largest prime which divides the order of N . Hence |G : M |
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must be a composite number. If M is nilpotent, then the Sylow 2-subgroup M2

of M is not identity by [14], Theorem 10.4.2. Let M2′ be a Hall 2
′-subgroup of M .

By [15], Theorem 1, M2′ is normal in G and therefore P E G since P is a char-

acteristic subgroup of M2′ . It follows that P ∩ N E G, a contradiction. Thus,

M ∈ Mpcn(G) ∩ MH(G). By the hypotheses, M has a subnormal SS-supplement

subgroupK in G. By using similar arguments as in the proof of Theorem 3.1, we can

get that |K| = |G : M | 6 |G : NG(P )| and so p ∤ |K|. However, K is subnormal in G,

which implies that K contains Ni for some i and hence p | |K|, a contradiction. This

shows that N is p-solvable and therefore H is p-solvable. The proof of the theorem

is now complete. �

From Theorem 3.4, we have the following corollary.

Corollary 3.5. Let p be the largest prime dividing the order of a groupG. ThenG

is p-solvable if and only if every maximal subgroup M of G in Mpcn(G) has a sub-

normal SS-supplement in G.

P r o o f. Only the necessity of the condition is in doubt by Theorem 3.4. Suppose

that G is p-solvable and M is a maximal subgroup of G. We argue by induction

on |G|. Assume thatMG 6= 1. Set G = G/MG. By induction, we can see thatM has

a subnormal SS-supplement K in G and so K is a subnormal SS-supplement of M

in G. Hence, we may assume that MG = 1 and let N be a minimal normal subgroup

of G. Then G = MN and M ∩ N 6 MG = 1, which implies that N is the normal

SS-supplement of M in G. �

Remark 3.6. In Theorem 3.4, the group G need not be p-solvable as the fol-

lowing example shows. Let H = C2 ×C2 ×C2 ×C2 be an elementary abelian group

of order 24. Then there is a subgroup M = A5 in the automorphism group of H ,

where A5 is the alternating group of degree 5. Let G = (C2 × C2 × C2 × C2) ⋊ A5

be the corresponding semidirect product. We can deduce thatMpcn(G)∩MH(G) =

{Mg : g ∈ G}. It is clear that M has a subnormal SS-supplement H in G. That is,

G satisfies the hypotheses of Theorem 3.4 for normal subgroup H . However, G is

not 5-solvable.

Finally we study the p-nilpotency and supersolvability of a group G by looking at

certain minimal subgroups, leading to generalizations of known results.

Theorem 3.7. Let p be the smallest prime dividing the order of a group G

and P a Sylow p-subgroup of G. If every minimal subgroup of P ∩ P x ∩ GNp

is SS-supplemented in G and when p = 2, either cyclic subgroup of order 4 of

P ∩P x∩GNp is also SS-supplemented in G for all x ∈ G\NG(P ) or P is quaternion-

free, then G is p-nilpotent.
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P r o o f. Suppose that the theorem is false and let G be a counterexample of

minimal order. Then G is not p-nilpotent. Noticing that all its Sylow p-subgroups

are conjugate in G, we see that the hypotheses of our theorem are a subgroup-

closure by Lemma 2.1. Consequently, G is a minimal non-p-nilpotent group

(that is, every proper subgroup of a group is p-nilpotent but is not p-nilpotent

itself). Now, by a result of Itô (see [14], Theorem 10.3.3), G must be a minimal

nonnilpotent group. By a result of Schmidt (see [14], Theorem 9.1.9 and Exer-

cise 9.1.11), we know that G is of order paqb, where q is a prime which is different

from p, P is normal in G and any Sylow q-subgroup Q of G is cyclic. More-

over, P = GNp and P is of exponent p when p is odd and of exponent at most 4

when p = 2.

Let P1 be a minimal subgroup of P . Then by hypotheses there exists a sub-

group K of G such that G = P1K and P1 ∩ K is S-quasinormal in K. Assume

that P1 ∩ K = 1. Since p is the smallest prime divisor of the order of G, we

get that K is normal in G. Noticing that K is a proper subgroup of G, we

have that K is nilpotent. It follows that the Sylow q-subgroup of K is normal

in G and therefore G is nilpotent, which is a contradiction. Hence, P1 6 K

and so P1 is S-quasinormal in G. Therefore every minimal subgroup of P is

S-quasinormal in G.

Let Q be a Sylow q-subgroup of G. Then P1Q is a proper group of G and P1Q

is nilpotent by the minimality of G. It follows that Q ⊆ CG(P1) and hence Q ⊆

CG(Ω1(P )). If CG(Ω1(P )) < G, then CG(Ω1(P )) is nilpotent and so Q E G, a con-

tradiction. This leads to CG(Ω1(P )) = G and Ω1(P ) 6 Z(G). If p > 2, then from

Itô’s Lemma (see [9]) G is nilpotent, a contradiction. Hence p = 2. If P is quaternion-

free, then by Lemma 2.6, we get that Ω1(P ) 6 P ∩GNp ∩Z(G) 6 P ∩GN∩Z(G) = 1,

a contradiction. Now assume that every cyclic subgroup of order 4 of P ∩P x ∩GNp

is SS-supplemented in G. Let A = 〈a〉 be a cyclic subgroup of P ∩ P x ∩ GNp with

order 4. Then there exists a subgroup T of G such that G = AT and A ∩ T is

S-quasinormal in T . Noticing that 〈a2〉 ⊆ Z(G), we see that 〈a2〉T is a subgroup

of G. If |G : T | = 4, then |G : 〈a2〉T | = 2 and 〈a2〉T is normal in G. This implies

that the Sylow q-subgroup of 〈a2〉T is normal in G and therefore G is nilpotent,

this is a contradiction. If |G : T | = 2, then T itself is a normal subgroup and T

is nilpotent. Since the normal p-complement of T is the normal p-complement of

G, it follows that G is nilpotent, a contradiction. Consequently, T = G and so

A is S-quasinormal in G. If A = P , then G is nilpotent, a contradiction. Thus,

A 6= P . Since G is a minimal nonnilpotent group and the exponent of P is at

most 4, we have P 6 CG(Q) and therefore G = P ×Q, a contradiction. The proof

is complete.

�
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We say that a group G is a Sylow tower group of supersolvable type if p1 >

p2 > . . . > pr are the distinct prime divisors of the order of G, then there exists

a series of normal subgroups of G,

1 = G0 6 G1 6 . . . 6 Gr = G,

such that Gi/Gi−1 is a Sylow pi-subgroup of G/Gi−1 for i = 1, . . . , r. Given

a group G, observing that HNp 6 GNp for every subgroup H of G by Lemma 2.7

and using Lemma 2.1 and Theorem 3.7, we obtain at once the following result.

Corollary 3.8. Let G be a group. Suppose that for every prime p dividing the

order of G and for every Sylow p-subgroup P of G, every minimal subgroup of

P ∩ P x ∩ GNp is SS-supplemented in G, and when p = 2, either cyclic subgroup of

order 4 of P ∩P x ∩GNp is also SS-supplemented in G for all x ∈ G \NG(P ) or P is

quaternion-free. Then G is a Sylow tower group of supersolvable type.

Theorem 3.9. Let F be a saturated formation containing the class of all super-

solvable groups and N be a normal subgroup of G such that G/N ∈ F. Suppose that

for every prime p dividing the order of N and for every Sylow p-subgroup P of N ,

every minimal subgroup of P ∩P x ∩GNp is SS-supplemented in G, and when p = 2,

every cyclic subgroup of order 4 of P ∩ P x ∩ GNp is also SS-supplemented in G for

all x ∈ G \NG(P ) or P is quaternion-free. Then G ∈ F.

P r o o f. Suppose that the theorem is false and let G be a counterexample of

minimal order. By Lemma 2.1 and Corollary 3.8, we know that N is a Sylow tower

group of supersolvable type. Thus if p is the largest prime dividing the order of N

and P is a Sylow p-subgroup of N , then P must be normal in G and G/P/N/P ∼=

G/N ∈ F. It is clear that G/P satisfies the hypotheses of our theorem for its

normal subgroup N/P by Lemmas 2.5 and 2.1. Then the minimality of G implies

that G/P ∈ F.

Now, when G is not in F, the F-residual GF of G is nontrivial. Since G/GN

is nilpotent and therefore G/GN belongs to F, necessarily G/(P ∩ GN) belongs

to F as well. It follows that GF 6 P ∩ GN. Furthermore, we claim that GF 6

P ∩ GNp . Let P ∗ be a Sylow p-subgroup of G. As G/GNp is p-nilpotent, we can

see that P ∗GNp ∩Op(G)GNp = GNp and so P ∗ ∩Op(G) 6 GNp , which means that

P ∗ ∩Op(G) = P ∩GNp . A similar argument shows that P ∗ ∩Op(G) = P ∩GN and

this proves our claim. By [3], Theorem 3.5, there exists a maximal subgroupM of G

such that G = MF ′(G), where F ′(G) = Soc(G modΦ(G)) and G/MG /∈ F. Then

G = MGF and so G = MF (G) since GF is a p-group, where F (G) is the Fitting
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subgroup of G. It is now clear that M satisfies the hypotheses of our theorem for its

normal subgroup M ∩ P . Hence, the minimality of G implies that M ∈ F.

Now, by Lemma 2.8, we get that GF/Φ(GF) is a minimal normal subgroup

of G/Φ(GF), G has exponent p when p > 2 and exponent at most 4 when p = 2. Let

Φ = Φ(GF) and A/Φ be any subgroup of GF/Φ with order p, a ∈ A\Φ and X = 〈a〉.

Then |X | = p or |X | = 4 and so X is SS-supplemented in G. Thus, there exists

a subgroup K of G such that G = XK and X ∩K is S-quasinormal in K. Clearly,

(XΦ/Φ)(K/Φ) = G/Φ. Assume that X � K, then XΦ/Φ � KΦ/Φ. Hence, the

minimality of GF/Φ implies that (GF ∩K)/Φ = 1, since GF/Φ ∩ K/Φ E G/Φ.

By order comparison, |GF/Φ| = p. Assume that X 6 K, then K = G and X is

S-quasinormal in G. It follows that A/Φ = XΦ/Φ is S-quasinormal in G/Φ. By

Lemma 2.3, Op(G/Φ) 6 NG/Φ(A/Φ) and so |G/Φ : NG/Φ(A/Φ)| = pa for some

a ∈ N. Thus if {A1/Φ, . . . , At/Φ} is the set of all minimal subgroups of GF/Φ,

then it follows from [8], III, 8.5 Hilfssatz, that |G/Φ : NG/Φ(Ai/Φ)| = 1 for some

i ∈ {1, . . . , t}. Hence, Ai/Φ is normal in G/Φ. The minimality of GF/Φ also implies

that |GF/Φ| = p.

Now (G/Φ)/(GF/Φ) ∼= G/GF ∈ F and GF/Φ is a cyclic group of order p. Hence,

(G/Φ, GF/Φ) satisfies the hypotheses of the theorem. If Φ 6= 1, then by the min-

imality of G, G/Φ ∈ F. It follows that G ∈ F, a contradiction. Thus Φ = 1 and

so GF is a cyclic group of order p. By Lemma 2.9, we can conclude that G ∈ F,

a contradiction.

There remains the case, where p = 2 and P is quaternion-free. Let R be a Sylow

r-subgroup of G with r 6= 2 and G1 = RGF. Then GF is a Sylow 2-subgroup of G1.

Observing that GF 6 P ∩ GNp , we have that G1 is 2-nilpotent by Theorem 3.7. It

follows that GF 6 CG(R) and therefore Z(G) ∩ GF 6= 1. Since GF 6 GN, we have

Z(G)∩GN ∩P 6= 1, in contradiction to Lemma 2.6. This completes the proof of the

theorem. �

As an immediate consequence of Theorem 3.9, we have:

Corollary 3.10. Let G be a group. Suppose that, for every prime p dividing

the order of G and for every Sylow p-subgroup P of G, every minimal subgroup of

P ∩ P x ∩ GNp is SS-supplemented in G, and when p = 2, every cyclic subgroup of

order 4 of P ∩P x ∩GNp is also SS-supplemented in G for all x ∈ G \NG(P ) or P is

quaternion-free. Then G is supersolvable.
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