Previous |  Up |  Next

Article

Keywords:
(pre)cover; tilting comodule; (co)localization; torsion theory
Summary:
Tilting theory plays an important role in the representation theory of coalgebras. This paper seeks how to apply the theory of localization and colocalization to tilting torsion theory in the category of comodules. In order to better understand the process, we give the (co)localization for morphisms, (pre)covers and special precovers. For that reason, we investigate the (co)localization in tilting torsion theory for coalgebras.
References:
[1] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Volume 1. Techniques of Representation Theory. London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). DOI 10.1017/CBO9780511614309 | MR 2197389 | Zbl 1092.16001
[2] Chin, W., Simson, D.: Coxeter transformation and inverses of Cartan matrices for coalgebras. J. Algebra 324 (2010), 2223-2248. DOI 10.1016/j.jalgebra.2010.06.029 | MR 2684139 | Zbl 1214.16011
[3] Cuadra, J., Gómez-Torrecillas, J.: Idempotents and Morita-Takeuchi theory. Commun. Algebra 30 (2002), 2405-2426. DOI 10.1081/AGB-120003476 | MR 1904645 | Zbl 1006.16050
[4] Dăscălescu, S., Năstăsescu, C., Raianu, Ş.: Hopf Algebras: An Introduction. Pure and Applied Mathematics, Marcel Dekker 235. Marcel Dekker, New York (2001). DOI 10.1201/9781482270747 | MR 1786197 | Zbl 0962.16026
[5] Fu, X., Hu, Y., Yao, H.: The resolution dimensions with respect to balanced pairs in the recollement of abelian categories. J. Korean Math. Soc. 56 (2019), 1031-1048. DOI 10.4134/JKMS.j180577 | MR 3978243 | Zbl 07128259
[6] Fu, X., Yao, H.: On Gorenstein coalgebras. Front. Math. China 11 (2016), 845-867. DOI 10.1007/s11464-016-0562-7 | MR 3531034 | Zbl 1370.16028
[7] Gabriel, P.: Des catégories abéliennes. Bull. Soc. Math. Fr. 90 (1962), 323-448 French. DOI 10.24033/bsmf.1583 | MR 0232821 | Zbl 0201.35602
[8] Gómez-Torrecillas, J., Năstăsescu, C., Torrecillas, B.: Localization in coalgebras: Applications to finiteness conditions. J. Algebra Appl. 2 (2007), 233-243. DOI 10.1142/S0219498807002156 | MR 2316418 | Zbl 1145.16020
[9] Jara, P., Merino, L. M., Llena, D., Ştefan, D.: Hereditary and formally smooth coalgebras. Algebr. Represent. Theory 8 (2005), 363-374. DOI 10.1007/s00000-005-8110-3 | MR 2176142 | Zbl 1098.16014
[10] Jara, P., Merino, L. M., Navarro, G.: Localization in tame and wild coalgebras. J. Pure Appl. Algebra 211 (2007), 342-359. DOI 10.1016/j.jpaa.2007.01.009 | MR 2340452 | Zbl 1124.16014
[11] Jara, P., Merino, L. M., Navarro, G., Ruiz, J. F.: Localization in coalgebras: Stable localizations and path coalgebras. Commun. Algebra 34 (2006), 2843-2856. DOI 10.1080/00927870600637066 | MR 2250572 | Zbl 1118.16027
[12] Kleiner, M., Reiten, I.: Abelian categories, almost split sequences, and comodules. Trans. Am. Math. Soc. 357 (2005), 3201-3214. DOI 10.1090/S0002-9947-04-03571-8 | MR 2135742 | Zbl 1068.18010
[13] Kosakowska, J., Simson, D.: Hereditary coalgebras and representations of species. J. Algebra 293 (2005), 457-505. DOI 10.1016/j.jalgebra.2005.04.019 | MR 2173711 | Zbl 1116.16038
[14] Lin, B. I.: Semiperfect coalgebras. J. Algebra 49 (1977), 357-373. DOI 10.1016/0021-8693(77)90246-0 | MR 0498663 | Zbl 0369.16010
[15] Liu, H., Zhang, S.: Equivalences induced by $n$-self-cotilting comodules. Adv. Pure Appl. Math. 2 (2011), 109-131. DOI 10.1515/apam.2010.029 | MR 2769312 | Zbl 1221.16025
[16] Montgomery, S.: Hopf Algebras and Their Actions on Rings. Regional Conference Series in Mathematics 82. American Mathematical Society, Providence (1993). DOI 10.1090/cbms/082 | MR 1243637 | Zbl 0793.16029
[17] Montgomery, S.: Indecomposable coalgebras, simple comodules, and pointed Hopf algebras. Proc. Am. Math. Soc. 123 (1995), 2343-2351. DOI 10.1090/S0002-9939-1995-1257119-3 | MR 1257119 | Zbl 0836.16024
[18] Năstăsescu, C., Torrecillas, B.: Torsion theories for coalgebras. J. Pure Appl. Algebra 97 (1994), 203-220. DOI 10.1016/0022-4049(94)00009-3 | MR 1312762 | Zbl 0820.16026
[19] Năstăsescu, C., Torrecillas, B.: Colocalization on Grothendieck categories with applications to coalgebras. J. Algebra 185 (1996), 108-124. DOI 10.1006/jabr.1996.0315 | MR 1409977 | Zbl 0863.18007
[20] Navarro, G.: Representation Theory of Coalgebras. Localization in Coalgebras: PhD Thesis. Universidad de Granada, Granada (2006).
[21] Navarro, G.: Simple comodules and localization in coalgebras. New Techniques in Hopf Algebras and Graded Ring Theory Koninklijke Vlaamse Academie van Belgie voor Wetenschappen en Kunsten, Brussel (2007), 141-164. MR 2395772 | Zbl 1146.16021
[22] Navarro, G.: Some remarks on localization in coalgebras. Commun. Algebra 36 (2008), 3447-3466. DOI 10.1080/00927870802107868 | MR 2441125 | Zbl 1157.16013
[23] Nowak, S., Simson, D.: Locally Dynkin quivers and hereditary coalgebras whose left comodules are direct sums of finite dimensional comodules. Commun. Algebra 30 (2002), 455-476. DOI 10.1081/AGB-120006503 | MR 1880685 | Zbl 1005.16037
[24] Radford, D. E.: On the structure of pointed coalgebras. J. Algebra 77 (1982), 1-14. DOI 10.1016/0021-8693(82)90274-5 | MR 0665161 | Zbl 0487.16011
[25] Simson, D.: Coalgebras, comodules, pseudocompact algebras and tame comodule type. Colloq. Math. 90 (2001), 101-150. DOI 10.4064/cm90-1-9 | MR 1874368 | Zbl 1055.16038
[26] Simson, D.: Path coalgebras of quivers with relations and a tame-wild dichotomy problem for coalgebras. Rings, Modules, Algebras, and Abelian Groups Lecture Notes in Pure and Applied Mathematics 236. Marcel Dekker, New York (2004), 465-492. MR 2050733 | Zbl 1072.16015
[27] Simson, D.: Irreducible morphisms, the Gabriel quiver and colocalisations for coalgebras. Int. J. Math. Math. Sci. 2006 (2006), Article ID 47146, 16 pages. DOI 10.1155/IJMMS/2006/47146 | MR 2251741 | Zbl 1171.16008
[28] Simson, D.: Hom-computable coalgebras, a composition factors matrix and an Euler bilinear form of an Euler coalgebra. J. Algebra 315 (2007), 42-75. DOI 10.1016/j.jalgebra.2007.01.024 | MR 2344333 | Zbl 1131.16020
[29] Simson, D.: Localising embeddings of comodule categories with applications to tame and Euler coalgebras. J. Algebra 312 (2007), 455-494. DOI 10.1016/j.jalgebra.2006.11.043 | MR 2320469 | Zbl 1136.16036
[30] Simson, D.: Cotilted coalgebras and tame comodule type. Arab. J. Sci. Eng., Sect. C, Theme Issues 33 (2008), 421-445. MR 2500051 | Zbl 1186.16039
[31] Simson, D.: Representation-directed incidence coalgebras of intervally finite posets and the tame-wild dichotomy. Commun. Algebra 36 (2008), 2764-2784. DOI 10.1080/00927870802068342 | MR 2422517 | Zbl 1191.16035
[32] Simson, D.: Tame-wild dichotomy for coalgebras. J. Lond. Math. Soc., II. Ser. 78 (2008), 783-797. DOI 10.1112/jlms/jdn047 | MR 2456905 | Zbl 1175.16029
[33] Simson, D.: Incidence coalgebras of intervally finite posets, their integral quadratic forms and comodule categories. Colloq. Math. 115 (2009), 259-295. DOI 10.4064/cm115-2-9 | MR 2491748 | Zbl 1173.16009
[34] Simson, D.: Coalgebras of tame comodule type, comodule categories, and a tame-wild dichotomy problem. Representation of Algebras and Related Topics EMS Series of Congress Reports, European Mathematical Society, Zürich (2011), 561-660. DOI 10.4171/101-1/12 | MR 2931905 | Zbl 1301.16042
[35] Sweedler, M. E.: Hopf Algebras. Mathematics Lecture Note Series. W. A. Benjamin, New York (1969). MR 0252485 | Zbl 0194.32901
[36] Takeuchi, M.: Morita theorems for categories of comodules. J. Fac. Sci., Univ. Tokyo, Sect. I A 24 (1977), 629-644. MR 0472967 | Zbl 0385.18007
[37] Wang, M.: Tilting comodules over semi-perfect coalgebras. Algebra Colloq. 6 (1999), 461-472. MR 1809680 | Zbl 0945.16034
[38] Woodcock, D.: Some categorical remarks on the representation theory of coalgebras. Commun. Algebra 25 (1997), 2775-2794. DOI 10.1080/00927879708826022 | MR 1458729 | Zbl 0883.18011
[39] Zhang, S., Yao, H.: Some remarks on cotilting comodules. Front. Math. China 9 (2014), 699-714. DOI 10.1007/s11464-014-0345-y | MR 3195842 | Zbl 1326.16030
Partner of
EuDML logo