Previous |  Up |  Next

Article

Keywords:
finite group; irreducible character; character table
Summary:
Let $G$ be a finite group. If $G$ has two rows which differ in only one entry in the character table, we call $G$ an RD1-group. We investigate the character tables of RD1-groups and get some necessary and sufficient conditions about RD1-groups.
References:
[1] Bianchi, M., Herzog, M.: Finite groups with non-trivial intersections of kernels of all but one irreducible characters. Int. J. Group Theory 7 (2018), 63-80. DOI 10.22108/ijgt.2017.21609 | MR 3757269 | Zbl 1446.20015
[2] Chillag, D.: On zeros of characters of finite groups. Proc. Am. Math. Soc. 127 (1999), 977-983. DOI 10.1090/S0002-9939-99-04790-5 | MR 1487363 | Zbl 0917.20007
[3] S. M. Gagola, Jr.: Characters vanishing on all but two conjugacy classes. Pac. J. Math. 109 (1983), 363-385. DOI 10.2140/pjm.1983.109.363 | MR 721927 | Zbl 0536.20005
[4] Grove, L. C.: Groups and Characters. Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs and Tracts. John Wiley & Sons, New York (1997). DOI 10.1002/9781118032688 | MR 1451623 | Zbl 0896.20001
[5] Isaacs, I. M.: Character Theory of Finite Groups. Academic Press, New York (1976). DOI 10.1090/chel/359 | MR 0460423 | Zbl 0337.20005
[6] James, G., Liebeck, M.: Representations and Characters of Groups. Cambridge University Press, New York (2001). DOI 10.1017/CBO9780511814532 | MR 1864147 | Zbl 0981.20004
Partner of
EuDML logo