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Abstract. Tilting theory plays an important role in the representation theory of coalge-
bras. This paper seeks how to apply the theory of localization and colocalization to tilting
torsion theory in the category of comodules. In order to better understand the process, we
give the (co)localization for morphisms, (pre)covers and special precovers. For that reason,
we investigate the (co)localization in tilting torsion theory for coalgebras.

Keywords: (pre)cover; tilting comodule; (co)localization; torsion theory

MSC 2020 : 16T15, 18G05, 18E40

1. Introduction

As is well-known, (co)localization is an important tool in the representation theory

of algebras. From different perspectives, many scholars researched the localization,

the most famous of which is the localization in rings as a systematic method of adding

multiplicative inverses to a ring. Gabriel in [7] abstractly described the localization in

abelian and Grothendieck categories. Since the categoryMC of right C-comodules

over a coalgebra C is a locally finite Grothendieck category, it is natural to consider

how to apply the localization to the category of comodules. Here, by a coalgebra we

mean a K-coalgebra, where K is a field.

Following the localization for rings, Năstăsescu and Torrecillas in [19] developed

a theory of localization for coalgebras. More precisely, if C is a coalgebra over

a field K and T is a dense subcategory or a Serre class of the categoryMC of right

C-comodules, Năstăsescu and Torrecillas considered the quotient category MC/T

and the canonical functor T : MC → MC/T . More importantly, Năstăsescu and
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Torrecillas considered the colocalizing subcategory T , i.e., the functor T has a left

adjoint H , instead of considering the localizing subcategory T , i.e., T is closed

under arbitrary direct sums, or equivalently, T has a right adjoint S. Later, Navarro

in [20] developed the ideas of Gabriel in the category of comodules by replacing the

quotient category with a comodule category, which makes it easier to understand

the localization for modules over an arbitrary algebra. The theory of localization

for coalgebras has been developed by some scholars, see [8], [10], [11], [20], [21], [22],

with the development of the representation theory of coalgebras, see [2], [5], [9],

[12]–[18], [23]–[34], [39].

Tilting theory which Simson in [25] hoped to develop in the categories of comodules

is a critical part of the representation theory of coalgebras. It is natural to consider

the following question.

Question. How to apply the theory of localization and colocalization to tilting

comodules and torsion pairs in the categories of comodules?

We present our main results as follows.

Theorem 1.1. Let C be a K-coalgebra, C∗ = HomK(C,K) be its K-dual

K-algebra with the multiplication given by the convolution product, and e ∈ C∗ be

an idempotent defining a perfect localization. Assume that X ∼= Ce is a quasi-finite

injective cogenerator, then M is a tilting eCe-comodule if and only if S(M) is

a tilting C-comodule.

Theorem 1.2. Assume that C is a basic coalgebra and an idempotent e ∈ C∗

defines a perfect localization. If M is a tilting eCe-comodule, then the following

holds for the C-comodule S(M):

(a) FC(S(M)) = Cogen(S(M));

(b) (TC(S(M)),FC(S(M))) is a torsion pair inMC .

This paper is organized as follows. Section 2 gives a brief overview of localization

and colocalization in the categories of comodules. Section 3 analyses the localization

and colocalization in morphisms. Section 4 presents the localization and colocaliza-

tion in precovers, covers and special precovers. Section 5, Section 6 and Section 7

investigate the questions of the localization and colocalization in tilting comodules,

comodule classes CogennM , Cogen∞M and torsion pairs.
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2. Preliminaries

Throughout, let (C,∆, ε) be a coalgebra over a field K, where ∆C (denoted by ∆)

is its comultiplication and ε is its counit. For any coalgebra C over a field K,

we denote by MC the categories of right C-comodules and by C∗ = HomK(C,K)

the K-dual algebra with respect to the convolution product, see [4]. The counit

ε : C → K of C is the identity element of the algebra C∗.

Following [11], we call a full subcategory T ofMC dense if for every exact sequence

0 → M ′ → M → M ′′ → 0 inMC , the comoduleM lies in T if and only if each of the

comodulesM ′ andM ′′ lies in T . In other words, T is closed under extensions inMC .

For any dense subcategory T ofMC , there exists an abelian categoryMC/T and an

exact functor T : MC → MC/T such that T (M) = 0 for everyM ∈ T , satisfying the

following universal property: for any exact functor F : MC → C such that F (M) = 0

for each M ∈ T , there exists a unique functor F : MC/T → C verifying that F =

FT , where C is an arbitrary abelian category. The category MC/T is called the

quotient category ofMC with respect to T and T is known as the quotient functor.

A dense subcategory T of MC is said to be localizing if the quotient functor

T : MC → MC/T has a right adjoint functor S : MC/T → MC , called the section

functor. If the section functor S is exact, a localizing subcategory T is called perfect

localizing. The subcategory T is said to be colocalizing if T has a left adjoint functor

H : MC/T → MC , called the colocalizing functor. The subcategory T is called

a perfect colocalizing subcategory if the colocalizing functor H is exact.

In [3], [11], [38], localizing subcategories of the comodule category MC are de-

scribed by means of idempotents e ∈ C∗ of the K-dual K-algebra C∗. In addition,

it is proved that the quotient category is the category of right comodules over the

coalgebra eCe, where e is an idempotent associated to the localizing subcategory.

The coalgebra structure of eCe is given by

∆eCe(exe) =
∑

(x)

ex(1)e⊗ ex(2)e and εeCe(exe) = e(x) for any x ∈ C,

where∆C(x) =
∑

(x)

x(1)⊗x(2) is the sigma notation of [35]. IfM is a rightC-comodule,

then eM has a natural structure of the right eCe-comodule given by

̺(ex) =
∑

(x)

ex(0) ⊗ ex(1)e, where ̺M (x) =
∑

(x)

x(0) ⊗ x(1)

for any x ∈ M by the sigma notation of [35].

The following two lemmas (cf. [7], [11] and [19]) list the properties of the (co)lo-

calizing functor.
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Lemma 2.1. Let T be a dense subcategory of the category of right comodulesMC

over a coalgebra C. Then the following statements hold.

(1) The quotient functor T is exact.

(2) If T is localizing, then the section functor S is left exact and the equivalence

TS ≃ 1MC/T holds.

(3) If T is colocalizing, then the colocalizing functor H is right exact and the

equivalence TH ≃ 1MC/T holds.

Lemma 2.2. Let C be a coalgebra and e be an idempotent in C∗. Then the

following statements hold.

(1) The quotient functor T : MC → MeCe is naturally equivalent to the func-

tor e(−). The quotient functor T is also equivalent to the cotensor func-

tor − � CeC.

(2) The section functor S : MeCe → MC is naturally equivalent to the cotensor

functor − �eCe Ce.

(3) If T is a colocalizing subcategory of MC , then the colocalizing functor H :

MeCe → MC is naturally equivalent to the functor CohomeCe(eC,−).

For the convenience of understanding, we present the following diagram

MC
T=e(−)=−�CeC

// MeCe

S=−�eCeCe

xx

H=CohomeCe(eC,−)

gg

Throughout we denote by Te the localizing subcategory associated to e for an idem-

potent e ∈ C∗ for any coalgebra C over a field K. For the convenience of writing,

we use T · instead of T (·). We assume, unless otherwise stated, that all comodules

are right comodules in this paper.

3. (Co)localization in morphisms

In this section, we apply the (co)localization technique to morphisms.

Lemma 3.1 ([6]). Let C be a K-coalgebra and e ∈ C∗ be an idempotent. We

have the following:

(1) if M is a zero C-comodule, then eM is a zero eCe-comodule;

(2) if ̺ : A → B is a C-comodule monomorphism, then the induced map ̺′ :

eA → eB is an eCe-comodule monomorphism;

(3) if τ : B → A is a C-comodule epimorphism, then the induced map τ ′ : eB → eA

is an eCe-comodule epimorphism.
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Corollary 3.2. Let C be a K-coalgebra and e ∈ C∗ be an idempotent. If ̺ :

A → B is a C-comodule isomorphism, then the induced map ̺′ : eA → eB is an

eCe-comodule isomorphism.

Let (M,̺) be a right C-comodule. Following [20], there exists a unique mini-

mal subcoalgebra cf(M) of C such that ̺(M) ⊆ M ⊗ cf(M), i.e., M is a right

cf(M)-comodule. This coalgebra cf(M) is called the coefficient space of M .

Definition 3.3 ([35]). Let C be a K-coalgebra, A and B subcoalgebras of C.

The wedge product of subspaces A and B of C is A ∧B = △−1(A⊗ C + C ⊗B).

Definition 3.4. Let C be a K-coalgebra. A subcoalgebra A of C is called

coidempotent if A ∧ A = A.

Lemma 3.5. Let C be a K-coalgebra and e ∈ C∗ be idempotent. A left

C-comodule M is zero if and only if the eCe-comodule eM = 0 for any idempo-

tent e ∈ C∗.

P r o o f. Necessity is clear. Sufficiency: Assume that the C-comodule M 6= 0.

By [20], there is a bijective correspondence between localizing subcategories T ofMC

and coidempotent subcoalgebras A of C, i.e., any localizing subcategories are related

to the coalgebra TC =
∑

M∈T

cf(M) and any coidempotent subcoalgebra A of C is re-

lated to the closed subcategory TA which consists of objects {M ∈ MC | cf(M) ⊆ A}.

By the assumption, M 6= 0 and there exists 0 6= m ∈ M such that

m =
∑

i

m0iε(m1i), where ̺(m) =
∑

i

m0i ⊗m1i,

where m0i ∈ M, m1i ∈ C, m0i is a linearly independent basis (it always exists

because of the tensor properties) and {m1i} 6= 0 for i = 1, . . . , n. For convenience,

we write m11 = x1,m12 = x2, . . .. From the previous description, we know 0 6= m1i ∈

cf(M) ⊆ A ⊆ C. Since every injective right C-comodule E is of the form E = Ce for

some idempotent e ∈ C∗, we get the form C = E1 ⊕ E2 ⊕ . . .. For the convenience

of writing, we denote by C = Cε = C(e⊕ e′) = C(e)⊕C(e′) = E1 ⊕E′
1, where e, e

′

are the idempotents of C∗, ε is a counit of C and e⊕ e′ = ε. Note that the counit ε

is an identity in C∗. In this case, E1 = Ce and E2 = Ce′. Let e1(xi) = ε(xi) and

e1(y) = 0 for y ∈ E′
1. It is easy to check that e1 is an idempotent in C∗. Without

loss of generality, we put e = e1. As a consequence,

e ⇀ m = e(m) =
∑

i

m0i · e(m1i) =
∑

i

m0i · ε(m1i) = m 6= 0.

Consequently, eM 6= 0 and we get a contradiction. �
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Lemma 3.6. Suppose that C is a K-coalgebra and an idempotent e ∈ C∗ defines

a localization.

(1) If M is a zero eCe-comodule, then S(M) is a zero C-comodule.

(2) If ̺ : A → B is an eCe-comodule monomorphism, then the induced map ̺′ :

S(A) → S(B) is a C-comodule monomorphism.

(3) If τ : A → B is an eCe-comodule epimorphism, then the induced map τ ′ :

S(A) → S(B) is a C-comodule epimorphism.

(4) If τ : A → B is an eCe-comodule isomorphism, then the induced map τ ′ :

S(A) → S(B) is a C-comodule isomorphism.

P r o o f. (1) It is clear.

(2) We have an exact sequence 0 → A → B in MeCe because ̺ : A → B is an

eCe-comodule monomorphism. Since S is a left exact functor, we get the exact

sequence 0 → S(A)
̺′

→ S(B) inMC . Hence, ̺′ is a C-comodule monomorphism.

(3) If τ : A → B is an eCe-comodule epimorphism, then we have D = Coker τ =

B/ Im τ = 0, i.e., B = Im τ . By (1), we know S(D) = 0. Thus, S(B/ Im τ) =

S(B)/S(Im τ) = S(B)/ ImS(τ) = 0, i.e., S(B) = ImS(τ). As a consequence, τ ′ =

S(τ) : S(A) → S(B) is a C-comodule epimorphism.

(4) The statement follows from (2) and (3) immediately. �

Lemma 3.7. Let C be a K-coalgebra and e ∈ C∗ be an idempotent. Then the

following statements hold:

(1) ̺ : A → B is a C-comodule monomorphism if and only if the induced map

̺′ = e(̺) : e(A) → e(B) is an eCe-comodule monomorphism for each idempo-

tent e ∈ C∗;

(2) ̺ : A → B is a C-comodule epimorphism if and only if the induced map ̺′ =

e(̺) : e(A) → e(B) is an eCe-comodule epimorphism for each idempotent e∈C∗;

(3) ̺ : A → B is aC-comodule isomorphism if and only if the induced map ̺′ = e(̺) :

e(A) → e(B) is an eCe-comodule isomorphism for each idempotent e ∈ C∗.

P r o o f. (1) The necessity follows from Lemma 3.1 (2). Sufficiency: Since ̺′ =

e(̺) is an eCe-comodule monomorphism for each idempotent e ∈ C∗, then Ker ̺′ =

e(Ker ̺) = 0. By Lemma 3.5, we know Ker ̺ = 0. Consequently, ̺ is a C-comodule

monomorphism.

(2) The necessity is obtained from Lemma 3.1 (3). Sufficiency: Since ̺′ = e(̺)

is an eCe-comodule epimorphism for each idempotent e ∈ C∗, then Coker̺′ =

e(Coker̺) = 0. It follows from Lemma 3.5 that Coker̺ = 0. Consequently, ̺ is a

C-comodule epimorphism.

(3) It follows from (1) and (2) immediately. �

668



Lemma 3.8. Assume that C is a K-coalgebra and an idempotent e ∈ C∗ defines

a localization. Then the following assertions hold:

(1) M is a zero eCe-comodule if and only if S(M) is a zero C-comodule;

(2) ̺ : A → B is an eCe-comodule monomorphism if and only if the induced map

̺′ = S(̺) : S(A) → S(B) is a C-comodule monomorphism;

(3) ̺ : A → B is an eCe-comodule epimorphism if and only if the induced map

̺′ = S(̺) : S(A) → S(B) is a C-comodule epimorphism;

(4) ̺ : A → B is an eCe-comodule isomorphism if and only if the induced map

̺′ = S(̺) : S(A) → S(B) is a C-comodule isomorphism.

P r o o f. (1) The necessity follows from Lemma 3.6 (1). Sufficiency: Suppose that

the eCe-comodule M 6= 0. Since the C-comodule S(M) = 0, we get TS(M) = 0 by

Lemma 3.1 (1). From Lemma 2.1 (2) TS ≃ 1MC/T , it follows that the eCe-comodule

M = 0 and we get a contradiction.

(2) The necessity is obtained from Lemma 3.6 (2). Sufficiency: If ̺′ = S(̺) is

a C-comodule monomorphism, then T (S(̺)) is an eCe-comodule monomorphism

by Lemma 3.1 (2). From Lemma 2.1 (2) TS ≃ 1MC/T and it follows that ̺ is an

eCe-comodule monomorphism.

(3) The necessity follows from Lemma 3.6 (3). Sufficiency: Assume that ̺′ = S(̺)

is a C-comodule epimorphism. It follows from Lemma 3.1 (3) that T (S(̺)) is an

eCe-comodule epimorphism. By Lemma 2.1 (2) TS ≃ 1MC/T and we know that ̺

is an eCe-comodule epimorphism.

(4) It is obvious. �

Lemma 3.9. Assume that C is a K-coalgebra and an idempotent e ∈ C∗ defines

a colocalization. Then the following assertions hold:

(1) if M is a zero eCe-comodule, then H(M) is a zero C-comodule;

(2) if ̺ : A → B is an eCe-comodule monomorphism, then the induced map ̺′ :

H(A) → H(B) is a C-comodule monomorphism;

(3) if τ : A → B is an eCe-comodule epimorphism, then the induced map τ ′ :

H(A) → H(B) is a C-comodule epimorphism;

(4) if τ : A → B is an eCe-comodule isomorphism, then the induced map τ ′ :

H(A) → H(B) is a C-comodule isomorphism.

P r o o f. (1) It is clear.

(2) Since ̺ : A → B is an eCe-comodule monomorphism, we get D = Ker ̺ ∼=

A/ Im ̺ = 0, i.e., A = Im ̺. It follows from (1) that H(D) = 0. Furthermore,

H(A/ Im ̺) = H(A)/ ImH(̺). Consequently, H(A) = ImH(̺) and ̺′ = H(̺) :

H(A) → H(B) is a C-comodule monomorphism.
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(3) If τ : A → B is an eCe-comodule epimorphism, then we have an exact sequence

A → B → 0 in MeCe. Since H is a right exact functor, we obtain the exact

sequence H(A)
̺′

→ H(B) → 0 inMC . Hence, ̺′ is a C-comodule epimorphism.

(4) The statement follows from (2) and (3) immediately. �

Lemma 3.10. Assume that C is a K-coalgebra and an idempotent e ∈ C∗ defines

a colocalization. Then the following assertions hold:

(1) M is a zero eCe-comodule if and only if H(M) is a zero C-comodule;

(2) ̺ : A → B is an eCe-comodule monomorphism if and only if the induced map

̺′ = H(̺) : H(A) → H(B) is a C-comodule monomorphism;

(3) ̺ : A → B is an eCe-comodule epimorphism if and only if the induced map

̺′ = H(̺) : H(A) → H(B) is a C-comodule epimorphism;

(4) ̺ : A → B is an eCe-comodule isomorphism if and only if the induced map

̺′ = H(̺) : H(A) → H(B) is a C-comodule isomorphism.

P r o o f. (1) The necessity follows from Lemma 3.9 (1). Sufficiency: Suppose that

the eCe-comodule M 6= 0. Since the C-comodule H(M) = 0, the eCe-comodule

TH(M) = 0 by Lemma 3.1 (1). From Lemma 2.1 (3) TH ≃ 1MC/T , it follows that

the eCe-comodule M = 0 and we get a contradiction.

(2) The necessity is obtained from Lemma 3.9 (2). Sufficiency: If ̺′ = H(̺) is

a C-comodule monomorphism, then T (H(̺)) is an eCe-comodule monomorphism

by Lemma 3.1 (2). By Lemma 2.1 (3) TH ≃ 1MC/T and we have that T (H(̺)) ∼= ̺

is an eCe-comodule monomorphism.

(3) The necessity is obtained from Lemma 3.9 (3). Sufficiency: If ̺′ = H(̺)

is a C-comodule epimorphism, then T (H(̺)) is an eCe-comodule epimorphism by

Lemma 3.1 (3). From Lemma 2.1 (3) TH ≃ 1MC/T and it follows that T (H(̺)) ∼= ̺

is an eCe-comodule epimorphism.

(4) It is obvious. �

4. (Co)localization in (pre)covers

In this section, we introduce the concepts of (pre)covers and special precovers for

comodules. In addition, we investigate their (co)localization.

Definition 4.1. Let F be a class of comodules in MC and M ∈ MC , then

ϕ ∈ HomC(X,M) with X ∈ F is an F -precover ofM if it satisfies that HomC(F, ϕ) :

HomC(F,X) → HomC(F,M) is surjective for each F ∈ F .

Definition 4.2. Let ϕ ∈ HomC(X,M) be an F -precover of M .
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(1) ϕ is said to be an F -cover of M , if ϕg = ϕ and g ∈ End(X) imply that g is an

automorphism of X ;

(2) ϕ is called special if ϕ ∈ HomC(X,M) is surjective and Kerϕ ∈ F⊥.

We call F ⊆ MC a precover (cover) class if each comodule has an F -precover

(F -cover).

Proposition 4.3. Assume that C is a K-coalgebra and an idempotent e ∈ C∗. If

a right C-comodule homomorphism ϕ ∈ HomC(X,M) is an F -cover of M , then the

right eCe-comodule homomorphism eϕ ∈ HomeCe(eX, eM) is an eF -cover of eM .

P r o o f. Since the right C-comodule homomorphism ϕ ∈ HomC(X,M) is an

F -cover of M , we get that ϕ∗ = HomC(F, ϕ) : HomC(F,X) → HomC(F,M) is

surjective for each F ∈ F , that is, HomC(F,X)
ϕ∗

→ HomC(F,M) → 0 in MC is

exact. Moreover, ϕg = ϕ and g ∈ EndC(X) imply that g is an automorphism

of X . By Lemma 3.1 (3), the eCe-comodule homomorphism eϕ∗ is surjective, i.e.,

HomeCe(eF, eX)
eϕ∗

−→ HomeCe(eF, eM) → 0 inMeCe is exact, where eF ∈ eF . Since

the C-comodule endomorphism g is an automorphism of X , it follows that for any

eCe-comodule endomorphism eg : eX → eX , eg is an automorphism of eX . As

a consequence, we obtain that the eCe-comodule homomorphism eϕ is an eF -cover

of eM . �

Remark 4.4. Assume that C is a K-coalgebra and an idempotent e ∈ C∗. If

a right C-comodule homomorphism ϕ ∈ HomC(X,M) is an F -precover of M ,

(1) then the right eCe-comodule homomorphism eϕ ∈ HomeCe(eX, eM) is an

eF -precover of eM ;

(2) in addition, if ϕ ∈ HomC(X,M) is a special F -precover of M , then the right

eCe-comodule homomorphism eϕ is a special eF -precover.

P r o o f. (1) It follows from Proposition 4.3.

(2) Since the C-comodule homomorphism ϕ ∈ HomC(X,M) is a special F -precover

of M , we get that ϕ ∈ HomC(X,M) is surjective and Kerϕ ∈ F⊥. Let N = Kerϕ,

then there is an exact sequence 0 → N → X
ϕ
→ M → 0 inMC . Since T is an exact

functor, we get the short exact sequence 0 → eN → eX
eϕ
−→ eM → 0 inMeCe. Since

Kerϕ ∈ F⊥, we obtain ExtC(F,N) = 0 for any F ∈ F . It follows from Lemma 3.1 (1)

that eExtC(F,N) = 0, i.e., ExteCe(eF, eN) = 0. Hence, eN = Ker(eϕ) ∈ (eF)⊥.

This shows that the eCe-comodule homomorphism eϕ is a special eF -precover. �

Corollary 4.5. Let C be a coalgebra. If F ⊆ MC is a (pre)cover class, then

eF ⊆ MeCe is also a (pre)cover class.

P r o o f. It follows from Proposition 4.3 and Remark 4.4. �
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Proposition 4.6. Assume that C is a K-coalgebra and an idempotent e ∈ C∗ de-

fines a localization. If a right eCe-comodule homomorphism ϕ ∈ HomeCe(X,M) is an

F -cover ofM , then the rightC-comodule homomorphism S(ϕ)∈HomC(S(X), S(M))

is an S(F)-cover of S(M).

P r o o f. Since the right eCe-comodule homomorphism ϕ ∈ HomeCe(X,M) is an

F -cover of M , we get that ϕ∗ = HomeCe(F, ϕ) : HomeCe(F,X) → HomeCe(F,M) is

surjective for each F ∈ F , that is, HomeCe(F,X)
ϕ∗

→ HomeCe(F,M) → 0 in MeCe

is exact. In addition, ϕg = ϕ and g ∈ EndeCe(X) imply that the eCe-comodule

endomorphism g is an automorphism of X . It follows from Lemma 3.6 (3) that the

right C-comodule homomorphism S(ϕ∗) is surjective, i.e., HomC(S(F ), S(X))
S(ϕ∗)
−→

HomC(S(F ), S(M)) → 0 in MC is exact, where S(F ) ∈ S(F). Since the eCe-

comodule endomorphism g ∈ HomeCe(X,X) is an automorphism of X , the C-

comodule endomorphism S(g) = HomC(S(X), S(X)) is also an automorphism

of S(X). Consequently, the C-comodule homomorphism S(ϕ) is an S(F)-cover

of S(M). �

Remark 4.7. Let C be a coalgebra and e ∈ C∗ be an idempotent which defines

a perfect localization. If a right eCe-comodule homomorphism ϕ ∈ HomeCe(X,M)

is an F -precover of M ,

(1) then the right C-comodule homomorphism S(ϕ) ∈ HomC(S(X), S(M)) is an

S(F)-precover of S(M);

(2) in addition, if ϕ ∈ HomeCe(X,M) is a special F -precover of M , then the right

C-comodule homomorphism S(ϕ) is a special S(F)-precover.

P r o o f. (1) It follows from Proposition 4.6.

(2) Since the eCe-comodule homomorphism ϕ ∈ HomeCe(X,M) is a special

F -precover of M , we get that ϕ ∈ HomeCe(X,M) is surjective and Kerϕ ∈ F⊥.

It follows from Lemma 3.6 (3) that the C-comodule homomorphism

S(ϕ) ∈ HomC(S(X), S(M))

is surjective. Let N = Kerϕ, then there is an exact sequence 0 → N → X
ϕ
→ M → 0

in MeCe. Since Kerϕ ∈ F⊥, it follows that ExteCe(F,N) = 0 for any F ∈ F .

Since S is an exact functor, we obtain the short exact sequence 0 → S(N) →

S(X)
S(ϕ)
−→ S(M) → 0 in MC . Since S is fully faithful, we obtain the following

commutative diagram (we denote S(·) by S· for convenience)

0 // HomeCe(F,N) //

∼=

��

HomeCe(F,X) //

∼=

��

HomeCe(F,M) //

∼=

��

0

0 // HomC(SF, SN) // HomC(SF, SX) // HomC(SF, SM) // ExtC(SF, SN)
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where S(F ) ∈ S(F). Hence, ExtC(S(F ), S(N)) = 0 and S(N) ∈ S(F)⊥. As a con-

sequence, S(N) = Ker(S(ϕ)) ∈ (S(F))⊥. This shows that the C-comodule homo-

morphism S(ϕ) is a special S(F)-precover. �

Proposition 4.8. Let C be a coalgebra and e ∈ C∗ be an idempotent defining

a colocalization. If a right eCe-comodule homomorphism ϕ ∈ HomeCe(X,M) is an

F -cover of M , then the right C-comodule homomorphism

H(ϕ) ∈ HomC(H(X), H(M))

is an H(F)-cover of H(M).

P r o o f. Since the right eCe-comodule homomorphism ϕ ∈ HomeCe(X,M) is an

F -cover of M , we get that ϕ∗ = HomeCe(F, ϕ) : HomeCe(F,X) → HomeCe(F,M) is

surjective for each F ∈ F , that is, HomeCe(F,X)
ϕ∗

→ HomeCe(F,M) → 0 in MeCe

is exact. Moreover, ϕg = ϕ and g ∈ EndeCe(X) imply that the eCe-comodule

endomorphism g is an automorphism of X . It follows from Lemma 3.9 (3) that the

C-comodule homomorphism H(ϕ∗) is surjective, where

H(ϕ∗) : HomC(H(F ), H(X)) → HomC(H(F ), H(M)).

In addition, H(F ) ∈ H(F) by the fact that X ∈ F . Since the eCe-comodule

endomorphism g ∈ HomeCe(X,X) is an automorphism of X , the C-comodule en-

domorphism H(g) = HomC(H(X), H(X)) is also an automorphism of H(X). In

addition, H(X) ∈ H(F) by the fact that X ∈ F . As a consequence, the C-comodule

homomorphism H(ϕ) is an H(F)-cover of H(M). �

Remark 4.9. Let C be a coalgebra and e ∈ C∗ be an idempotent which defines

a perfect colocalization. If a right eCe-comodule homomorphism ϕ ∈ HomeCe(X,M)

is an F -precover of M ,

(1) then the right C-comodule homomorphism H(ϕ) ∈ HomC(H(X), H(M)) is an

H(F)-precover of H(M);

(2) in addition, if ϕ ∈ HomeCe(X,M) is a special F -precover of M , then the right

C-comodule homomorphism H(ϕ) is a special H(F)-precover.

P r o o f. (1) It follows from Proposition 4.8.

(2) Since the eCe-comodule homomorphism ϕ ∈ HomeCe(X,M) is a special

F -precover of M , we get that ϕ ∈ HomeCe(X,M) is surjective and Kerϕ ∈ F⊥.

By Lemma 3.9 (3), we know that the C-comodule homomorphism

H(ϕ) ∈ HomC(H(X), H(M))
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is surjective. Let N = Kerϕ, then there is an exact sequence 0 → N → X
ϕ
→ M → 0

in MeCe. It follows that ExteCe(F,N) = 0 for any F ∈ F , because Kerϕ ∈ F⊥.

Since H is an exact functor, there is the following exact sequence 0 → H(N) →

H(X)
H(ϕ)
−→ H(M) → 0 in MC . Since H is fully faithful, we obtain the following

commutative diagram (we denote H(·) by H · for convenience)

0 // HomeCe(F,N) //

∼=

��

HomeCe(F,X) //

∼=

��

HomeCe(F,M) //

∼=

��

0

0 // HomC(HF,HN) // HomC(HF,HX) // HomC(HF,HM) // ExtC(HF,HN),

where HF ∈ HF . Therefore, ExtC(H(F ), H(N)) = 0 and H(N) ∈ H(F)⊥. As

a consequence, H(N) = Ker(H(ϕ)) ∈ (HF)⊥. This shows that the C-comodule

homomorphism H(ϕ) is a special H(F)-precover. �

Theorem 4.10. Let C be a coalgebra and e ∈ C∗ be an idempotent.

(1) A C-comodule homomorphism ϕ ∈ HomC(X,M) is an F -precover of M if and

only if the right eCe-comodule homomorphism eϕ ∈ HomeCe(eX, eM) is an

eF -precover of eM for each idempotent e ∈ C∗.

(2) A C-comodule homomorphism ϕ ∈ HomC(X,M) is an F -cover of M if and

only if the right eCe-comodule homomorphism eϕ ∈ HomeCe(eX, eM) is an

eF -cover of eM for each idempotent e ∈ C∗.

(3) A C-comodule homomorphism ϕ ∈ HomC(X,M) is a special F -precover of M

if and only if the right eCe-comodule homomorphism eϕ ∈ HomeCe(eX, eM) is

a special eF -precover of eM for each idempotent e ∈ C∗.

P r o o f. (1) The necessity is obtained from Remark 4.4 (1). Sufficiency: Let us

suppose that the right eCe-comodule homomorphism eϕ ∈ HomeCe(eX, eM) is an

eF -precover of eM , then

HomeCe(eF, eX)
eϕ∗

−→ HomeCe(eF, eM) → 0 inMeCe

is exact, i.e., Coker(eϕ∗) = e Cokerϕ∗ = 0. Since e ∈ C∗ is an arbitrary idempotent,

it follows from Lemma 3.5 that Cokerϕ∗ = 0, where the C-comodule homomorphism

ϕ∗ : HomC(F,X) → HomC(F,M) is given by ϕ∗(f) = ϕf . Hence, HomC(F,X)
ϕ∗

→

HomC(F,M) → 0 in MC is exact. As a consequence, the C-comodule homomor-

phism ϕ ∈ HomC(X,M) is an F -precover of M .

(2) By Proposition 4.3, the necessity is obvious. Sufficiency: Let us suppose that

the right eCe-comodule homomorphism eϕ ∈ HomeCe(eX, eM) is an eF -cover of eM .

Firstly, the eCe-comodule homomorphism eϕ ∈ HomeCe(eX, eM) is an eF -precover
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of eM . By (1), we know that the C-comodule homomorphism ϕ ∈ HomC(X,M)

is an F -precover of M . Furthermore, (eϕ)(eg) = (eϕ) and eg ∈ EndeCe(eX, eX)

imply that the eCe-comodule endomorphism eg is an automorphism of eX , i.e.,

Ker(eg) = eKer g = 0 and Coker(eg) = eCokerg = 0. Since e ∈ C∗ is an arbi-

trary idempotent, it follows from Lemma 3.5 that Ker g = 0 and Coker g = 0. As

a consequence, ϕg = ϕ and g ∈ EndC(X) imply that the C-comodule endomor-

phism g is an automorphism of X . Consequently, the C-comodule homomorphism

ϕ ∈ HomC(X,M) is an F -cover of M .

(3) The necessity follows from Remark 4.4 (2). Sufficiency: If the right eCe-

comodule homomorphism eϕ ∈ HomeCe(eX, eM) is a special eF -precover ofM , then

eϕ is surjective and Ker(eϕ) ∈ (eF)⊥, where ϕ ∈ HomC(X,M). Let Ker(eϕ) = eN ,

i.e., 0 → eN → eX → eM → 0 in MeCe is an exact sequence. Take eF ∈ eF ,

then Ext1eCe(eF, eN) = eExt1C(F,N) = 0. Since e ∈ C∗ is an arbitrary idempotent,

it follows from Lemma 3.5 that Ext1C(F,N) = 0, where F ∈ F . Consequently,

N = Kerϕ ∈ (F)⊥, where ϕ ∈ HomC(X,M). As a consequence, the C-comodule

homomorphism ϕ ∈ HomC(X,M) is a special F -precover of M . �

Theorem 4.11. Let C be a coalgebra and e ∈ C∗ be an idempotent defining

a localization.

(1) An eCe-comodule homomorphism ϕ ∈ HomeCe(X,M) is an F -precover ofM if

and only if the right C-comodule homomorphism S(ϕ) ∈ HomC(S(X), S(M))

is an S(F)-precover of S(M).

(2) An eCe-comodule homomorphism ϕ ∈ HomeCe(X,M) is an F -cover of M if

and only if the right C-comodule homomorphism S(ϕ) ∈ HomC(S(X), S(M))

is an S(F)-cover of S(M).

(3) An eCe-comodule homomorphism ϕ ∈ HomeCe(X,M) is a special F -precover

of M if and only if the right C-comodule homomorphism S(ϕ) ∈ HomC(S(X),

S(M)) is a special S(F)-precover of S(M).

P r o o f. (1) The necessity follows from Remark 4.7 (1). Sufficiency: If the

right C-comodule homomorphism S(ϕ) ∈ HomC(S(X), S(M)) is an S(F)-precover

of S(M), then the eCe-comodule homomorphism T (S(ϕ)) is a TS(F)-precover of

T (S(M)) by Remark 4.4 (1). By Lemma 2.1 (2) TS ≃ 1MC/T and we get that the

eCe-comodule homomorphism T (S(ϕ)) ∼= ϕ is an F -precover of M .

(2) The necessity is obtained from Proposition 4.6. Sufficiency: If the right

C-comodule homomorphism S(ϕ) ∈ HomC(S(X), S(M)) is an S(F)-cover of S(M),

then the eCe-comodule homomorphism T (S(ϕ)) is a TS(F)-cover of T (S(M)) by

Proposition 4.3. From Lemma 2.1 (2) TS ≃ 1MC/T and it follows that the eCe-

comodule homomorphism T (S(ϕ)) ∼= ϕ is an F -cover of M .
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(3) By Remark 4.7(2), the necessity is clear. Sufficiency: If the right C-comodule

homomorphism S(ϕ) ∈ HomC(S(X), S(M)) is a special S(F)-precover of S(M),

then the eCe-comodule homomorphism T (S(ϕ)) is a special TS(F)-precover of

T (S(M)) by Remark 4.4 (2). From Lemma 2.1 (2) TS ≃ 1MC/T and it follows

that the eCe-comodule homomorphism T (S(ϕ)) ∼= ϕ is a special F -precover of M .

�

Theorem 4.12. Let C be a coalgebra and e ∈ C∗ be an idempotent which defines

a colocalization.

(1) An eCe-comodule homomorphism ϕ ∈ HomeCe(X,M) is an F -precover ofM if

and only if the right C-comodule homomorphism H(ϕ) ∈ HomC(H(X), H(M))

is an H(F)-precover of H(M).

(2) An eCe-comodule homomorphism ϕ ∈ HomeCe(X,M) is an F -cover of M if

and only if the right C-comodule homomorphism H(ϕ) ∈ HomC(H(X), H(M))

is an H(F)-cover of H(M).

(3) An eCe-comodule homomorphism ϕ ∈ HomeCe(X,M) is a special F -precover

ofM if and only if the right C-comodule homomorphism H(ϕ) ∈ HomC(H(X),

H(M)) is a special H(F)-precover of H(M).

P r o o f. (1) The necessity is obtained from Remark 4.9 (1). Sufficiency: If the

rightC-comodule homomorphismH(ϕ) ∈ HomC(H(X), H(M)) is anH(F)-precover

of H(M), then the eCe-comodule homomorphism T (H(ϕ)) is a TH(F)-precover of

T (H(M)) by Remark 4.4 (1). By Lemma 2.1 (3) TH ≃ 1MC/T and we get that the

eCe-comodule homomorphism T (H(ϕ)) ∼= ϕ is an F -precover of M .

(2) The necessity follows from Proposition 4.8. Sufficiency: If the rightC-comodule

homomorphism H(ϕ) ∈ HomC(H(X), H(M)) is an H(F)-cover of H(M), then the

eCe-comodule homomorphism T (H(ϕ)) is a TH(F)-cover of T (H(M)) by Proposi-

tion 4.3. By Lemma 2.1 (3) TH ≃ 1MC/T and we obtain that the eCe-comodule

homomorphism T (H(ϕ)) ∼= ϕ is an F -cover of M .

(3) The necessity is obtained from Remark 4.9 (2). Sufficiency: If the right

C-comodule homomorphismH(ϕ)∈HomC(H(X), H(M)) is a specialH(F)-precover

of H(M), then the eCe-comodule homomorphism T (H(ϕ)) is a special TH(F)-

precover of T (H(M)) by Remark 4.4 (2). From Lemma 2.1 (3) TH ≃ 1MC/T and it

follows that the eCe-comodule homomorphism T (H(ϕ)) ∼= ϕ is a special F -precover

of M . �
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5. (Co)localization in tilting comodules

In this section, we recall the notion of tilting comodules and apply (co)localization

technique to them.

Definition 5.1 ([37]). A right C-comodule M is called a tilting comodule if M

satisfies the following three conditions:

(1) inj.dim(M) 6 1;

(2) Ext1C(M
X ,M) = 0 for any cardinal X ;

(3) there exists an exact sequence 0 → M1 → M0 → C → 0, where Mi ∈ ProdM .

Proposition 5.2. Let C be a K-coalgebra and e ∈ C∗ be an idempotent. IfM is

a tilting C-comodule and X ∼= Ce is a quasi-finite injective cogenerator, then T (M)

is a tilting eCe-comodule.

P r o o f. By [38], Theorem 1.13, we know that X ∼= Ce is a quasi-finite injective

cogenerator if and only if the functor T is an equivalence.

(1) By the assumption, we have inj.dim(M) 6 1, that is, there is an exact sequence

0 → M → E0 → E1 → 0 in MC , where E0 and E1 are injective C-comodules.

Consequently, 0 → T (M) → T (E0) → T (E1) → 0 is exact, where T (E0) and T (E1)

are injective right eCe-comodules. Hence, we get inj.dim(T (M)) 6 1.

(2) Take an exact sequence 0 → M → E → E/M → 0 in MC , where E is an

injective C-comodule. By the assumption, we get Ext1C(M
X ,M) = 0. Since T

is an equivalence, we obtain the commutative diagram, see Diagram 1 (we de-

note T (·) by T · for convenience) where T (MX) = (TM)X . As a consequence, we get

ExteCe((TM)X , TM) = 0.

(3) It follows from our assumption that the exact sequence 0 → M1 → M0 →

C → 0 lies in MC , where Mi ∈ ProdM . Since T is an equivalence, we obtain the

short exact sequence 0 → T (M1) → T (M0) → eCe → 0 in MeCe, where T (Mi) ∈

ProdT (M). �

Proposition 5.3. Let C be a K-coalgebra and e ∈ C∗ be an idempotent defin-

ing a perfect localization. If M is a tilting eCe-comodule, then S(M) is a tilting

C-comodule.

P r o o f. (1) By the assumption, we get inj.dim(M) 6 1, that is, there is an

exact sequence 0 → M → E0 → E1 → 0 in MeCe, where E0 and E1 are injective

eCe-comodules. Since S is exact and preserves injective comodules, we have the

short exact sequence 0 → S(M) → S(E0) → S(E1) → 0 in MC , where S(E0)

and S(E1) are injective right C-comodules. Therefore, we get inj.dim(S(M)) 6 1.
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(2) Take an exact sequence 0 → M → E → E/M → 0 in MeCe, where E is an

injective eCe-comodule. It follows from the assumption that Ext1eCe(M
X ,M) = 0.

Since S is fully faithful, we have the commutative diagram, see Diagram 2 (we

denote S(·) by S· for convenience) where S(MX) = (SM)X because S preserves

products of comodules. As a consequence, ExtC((SM)X , SM) = 0.

(3) It follows from our assumption that the exact sequence 0 → M1 → M0 →

eCe → 0 lies in MeCe, where Mi ∈ ProdM . Since S is an exact functor and

preserves products of comodules, we obtain the short exact sequence 0 → S(M1) →

S(M0) → C → 0 inMC , where S(Mi) ∈ ProdS(M). �

Theorem 5.4. Let C be a K-coalgebra, C∗ = HomK(C,K) be its K-dual

K-algebra with the multiplication given by the convolution product, and e ∈ C∗ be

an idempotent defining a perfect localization. Assume that X ∼= Ce is a quasi-finite

injective cogenerator, then M is a tilting eCe-comodule if and only if S(M) is

a tilting C-comodule.

P r o o f. Necessity: It follows from Proposition 5.3. Sufficiency: It follows

from [38], Theorem 1.13, that the functor T is an equivalence if and only if X ∼= Ce

is a quasi-finite injective cogenerator.

(1) By the assumption, we obtain inj.dimS(M) 6 1, that is, there is an exact

sequence 0 → S(M) → S(E0) → S(E1) → 0 in MC , where S(E0) and S(E1) are

injective C-comodules. Since T is an equivalence, it follows that 0 → TS(M) →

TS(E0) → TS(E1) → 0 inMeCe is exact, where TS(E0) and TS(E1) are injective

right eCe-comodules. By Lemma 2.1 (2) TS = 1M/T and we obtain the short ex-

act sequence 0 → M → E0 → E1 → 0 in MeCe, where E0 and E1 are injective

eCe-comodules. Consequently, we get inj.dim(M) 6 1.

(2) Take an exact sequence 0 → S(M) → S(E) → S(E)/S(M) → 0 in MC ,

where S(E) is an injective C-comodule. By the assumption, we have Ext1C((SM)X ,

S(M)) = 0. Since T is an equivalence, we get the commutative diagram, see Dia-

gram 3 (we denote S(·) by S· for convenience) where T ((SM)X) = (TSM)X . As a

consequence, ExteCe(M
X ,M) = 0.

(3) It follows from our assumption that the exact sequence 0 → S(M1) →

S(M0) → C → 0 lies inMC , where S(Mi) ∈ ProdS(M). Since T is an equivalence,

we obtain the short exact sequence 0 → TS(M1) → TS(M0) → eCe → 0 inMeCe,

where TS(Mi) ∈ ProdTS(M). From Lemma 2.1 (2) TS ≃ 1MC/T and it follows

that there is the short exact sequence 0 → M1 → M0 → eCe → 0 inMeCe, where

Mi ∈ ProdM . �

We recall the concept of cotilting comodule introduced by Simson in [30].
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Definition 5.5. M is called a cotilting comodule if M satisfies the following

three conditions:

(a) M is quasi-finite;

(b) inj.dim(M) 6 1;

(c) Ext1C(M
X ,M) = 0 for any cardinal X ;

(d) there exists an exact sequence 0 → M1 → M0 → C → 0, where Mi ∈ ProdM .

Remark 5.6. Definition 5.5 has one more condition as compared with Defi-

nition 5.1, i.e., M is quasi-finite. In this section, we adopt the Definition 5.1 of

tilting comodule introduced by Wang in [37]. However, if we adopt Definition 5.5,

then Propositions 5.2 and 5.3 and Theorem 5.4 also hold because S preserves

quasi-finiteness and T preserves quasi-finiteness under the condition that T is an

equivalence.

6. (Co)localization in Cogenn M

Given the classes Cogenn M and Cogen∞ M of comodules (cf. [15]), we research

their (co)localizations, which contributes significantly to investigate the tilting theory

for the categories of comodules.

Definition 6.1. For M,U ∈ MC , we denote by Cogenn M the following class

consisting of the C-comodules U

CogennM = {U ∈ MC : there is an exact sequence 0 → U → MX1 → MX2

→ . . . → MXn , where Xi are cardinals for all 1 6 i 6 n}.

In addition, we define Cogen∞M as

Cogen∞M = {U ∈ MC : there is an exact sequence 0 → U → MX1 → MX2

→ . . . → MXn → . . . , where Xi are cardinals for all i > 1}.

Lemma 6.2. Let C be a K-coalgebra and e ∈ C∗ be an idempotent. If X ∼= Ce

is a quasi-finite injective cogenerator and a right C-comodule U ∈ CogennM , then

the right eCe-comodule T (U) ∈ CogennT (M).

P r o o f. By [38], Theorem 1.13 we get that X ∼= Ce is a quasi-finite injective

cogenerator if and only if the functor T is an equivalence.

Since the right C-comodule U ∈ Cogenn M , we have the exact sequence

0 → U → MX1 → MX2 → . . . → MXn
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inMC , where Xi are cardinals for all 1 6 i 6 n. Since T is an equivalence, there is

the exact sequence

0 → T (U) → (T (M))X1 → (T (M))X2 → . . . → (T (M))Xn

in MeCe, where Xi are cardinals for all 1 6 i 6 n. As a consequence, the right

eCe-comodule T (U) ∈ Cogenn T (M). �

Lemma 6.3. Assume that C is a K-coalgebra and an idempotent e ∈ C∗ defines

a localization. If a right eCe-comodule U ∈ Cogenn M , then the right C-comodule

S(U) ∈ Cogenn S(M).

P r o o f. By the assumption, there is an exact sequence

0 → U → MX1 → MX2 → . . . → MXn

inMeCe, where Xi are cardinals for all 1 6 i 6 n. Since the section functor S is left

exact and preserves products of comodules, there is the exact sequence

0 → S(U) → (S(M))X1 → (S(M))X2 → . . . → (S(M))Xn

in MC , where Xi are cardinals for all 1 6 i 6 n, i.e., the C-comodule S(U) ∈

Cogenn S(M). �

Lemma 6.4. Let C be a K-coalgebra and e ∈ C∗ be an idempotent. If X ∼= Ce is

a quasi-finite injective cogenerator and a right eCe-comodule U ∈ CogennM if and

only if the right C-comodule S(U) ∈ CogennS(M).

P r o o f. The necessity follows from Lemma 6.3. Sufficiency: By [38], Theo-

rem 1.13 we get that X ∼= Ce is a quasi-finite injective cogenerator if and only

if the quotient functor T is an equivalence.

Since the right C-comodule S(U) ∈ CogennS(M), we have the exact sequence

0 → S(U) → (S(M))X1 → (S(M))X2 → . . . → (S(M))Xn

inMC because the quotient functor T is an equivalence, where Xi are cardinals for

all 1 6 i 6 n. It follows that there is the exact sequence

0 → TS(U) → (TS(M))X1 → (TS(M))X2 → . . . → (TS(M))Xn

inMeCe, where Xi are cardinals for all 1 6 i 6 n. By Lemma 2.1 (2) TS ≃ 1MC/T

and we get the exact sequence

0 → U → MX1 → MX2 → . . . → MXn

in MeCe, where Xi are cardinals for all 1 6 i 6 n. Consequently, the right eCe-

comodule U ∈ CogennM . �
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Lemma 6.5. Assume that C is a K-coalgebra and an idempotent e ∈ C∗ defines

a colocalization, then the colocalizing functor H preserves products of comodules.

P r o o f. By Lemma 2.2, the colocalizing functor H : MeCe → MC is naturally

equivalent to the functor CohomeCe(eC,−). As a consequence,

CohomeCe

(

eC,
∏

i

Mi

)

= CohomeCe

(

eC,
∏

i

Mi �eC eC
)

=
∏

i

Mi �eC CohomeCe(eC, eC)

=
∏

i

(Mi �eC CohomeCe(eC, eC))

=
∏

i

CohomeCe(eC,Mi �eC eC)

=
∏

i

CohomeCe(eC,Mi).

It follows from [36], Proposition 1.14 that the second equality and the fourth equality

hold because eC is quasi-finite. Since CohomeCe(eC, eC) is quasi-finite, it has a left

adjoint and the third equality holds. �

Lemma 6.6. Assume that C is a K-coalgebra and an idempotent e ∈ C∗ defines

a perfect colocalization. If a right eCe-comodule U ∈ CogennM , then the right

C-comodule H(U) ∈ CogennH(M).

P r o o f. By the assumption, there is an exact sequence

0 → U → MX1 → MX2 → . . . → MXn

inMeCe, where Xi are cardinals for all 1 6 i 6 n. Since the colocalizing functor H

is exact and preserves products of comodules, there is the following exact sequence

0 → H(U) → (H(M))X1 → (H(M))X2 → . . . → (H(M))Xn

in MC , where Xi are cardinals for all 1 6 i 6 n, i.e., the C-comodule H(U) ∈

CogennH(M). �

Lemma 6.7. Suppose that C is a K-coalgebra and an idempotent e ∈ C∗ de-

fines a perfect colocalization. If X ∼= Ce is a quasi-finite injective cogenerator

and a right eCe-comodule U ∈ Cogenn M if and only if the right C-comodule

H(U) ∈ Cogenn H(M).
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P r o o f. The necessity follows from Lemma 6.6. Sufficiency: By [38], Theo-

rem 1.13 we get that X ∼= Ce is a quasi-finite injective cogenerator if and only

if the quotient functor T is an equivalence.

Since the right C-comodule H(U) ∈ CogennH(M), we have the exact sequence

0 → H(U) → (H(M))X1 → (H(M))X2 → . . . → (H(M))Xn

in MC , where Xi are cardinals for all 1 6 i 6 n. It follows that there is the exact

sequence

0 → TH(U) → (TH(M))X1 → (TH(M))X2 → . . . → (TH(M))Xn

in MeCe because the quotient functor T is an equivalence, where Xi are cardinals

for all 1 6 i 6 n. By Lemma 2.1 (3) TH ≃ 1MC/T and we get the exact sequence

0 → U → MX1 → MX2 → . . . → MXn

in MeCe, where Xi are cardinals for all 1 6 i 6 n. Consequently, the right eCe-

comodule U ∈ CogennM . �

Similarly, we have the following lemmas. We just state them and omit the proofs.

Lemma 6.8. Let C be a K-coalgebra and e ∈ C∗ be an idempotent. If X ∼= Ce

is a quasi-finite injective cogenerator and a right C-comodule U ∈ Cogen∞M , then

the right eCe-comodule T (U) ∈ Cogen∞T (M).

Lemma 6.9. Assume that C is a K-coalgebra and an idempotent e ∈ C∗ defines

a localization. If a right eCe-comodule U ∈ Cogen∞M , then the right C-comodule

S(U) ∈ Cogen∞S(M).

Lemma 6.10. Let C be a K-coalgebra and e ∈ C∗ be an idempotent. If X ∼= Ce

is a quasi-finite injective cogenerator and a right eCe-comodule U ∈ Cogen∞M if

and only if the right C-comodule S(U) ∈ Cogen∞S(M).

Lemma 6.11. Suppose that C is aK-coalgebra and an idempotent e ∈ C∗ defines

a perfect colocalization. If a right eCe-comodule U ∈ Cogen∞M , then the right

C-comodule H(U) ∈ Cogen∞H(M).

Lemma 6.12. Assume that C is a K-coalgebra and an idempotent e ∈ C∗ de-

fines a perfect colocalization. If X ∼= Ce is a quasi-finite injective cogenerator

and a right eCe-comodule U ∈ Cogen∞M if and only if the right C-comodule

H(U) ∈ Cogen∞H(M).
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7. (Co)localization in torsion theories

In this section, we apply the (co)localization technique to torsion pairs. We intro-

duce the full subcategories ofMC as

TC(M) = {X ∈ MC ; HomC(X,M) = 0} ⊆ MC ,

FC(M) = {X ∈ MC ; ExtC(X,M) = 0} ⊆ MC .

We recall the notion of a torsion pair (i.e. torsion theory, cf. [1], Definition 1.1 in

Section VI.1 of Chapter VI).

Definition 7.1. A pair (T ,F) of full subcategories of MC is called a torsion

pair (or a torsion theory) if the following conditions hold:

(a) HomC(M,N) = 0 for all M ∈ T and N ∈ F ;

(b) HomC(M,−)|F = 0 implies M ∈ T ;

(c) HomC(−, N)|T = 0 implies N ∈ F .

As described in previous Section 6, when n is equal to 1, CogennM denotes the full

subcategory ofMC consisting of all comodules U such that there is a monomorphism

U → ML for some index set L. In fact, in this case CogennM is the class of

comodules cogenerated by M and we also denote the class by CogenM , that is,

CogennM = CogenM .

Lemma 7.2 ([30]). Assume that C is a basic coalgebra. If M is a tilting

C-comodule, then

(a) FC(M) = Cogen(M);

(b) (TC(M),FC(M)) is a torsion pair inMC .

Lemma 7.3. Assume that C is a basic coalgebra and e ∈ C∗ is an idempotent.

If M is a tilting C-comodule and X ∼= Ce is a quasi-finite injective cogenerator,

then

(a) FeCe(T (M)) = Cogen(T (M));

(b) (TeCe(T (M)),FeCe(T (M))) is a torsion pair inMeCe.

P r o o f. By [38], Theorem 1.13 we get that X ∼= Ce is a quasi-finite injective

cogenerator if and only if the functor T is an equivalence.

(a) Let eCe-comodule Z ∈ Cogen(T (M)), then there is a monomorphism u :

Z → (T (M))L for some L. There exists a C-comodule X such that T (X) = Z
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and u : T (X) → (T (M))L ∼= T (ML) because T is an equivalence. Since T is an

equivalence, there is the commutative diagram

X
v //

∼=

��

ML

∼=

��
T (X)

u // T (ML).

Consequently, u is injective if and only if v : X → ML is injective if and only

if Ext1C(X,M) = 0 if and only if Ext1eCe(T (X), T (M)) = 0, i.e., T (X) = Z ∈

FeCe(T (M)).

(b) In order to prove (TeCe(T (M)),FeCe(T (M))) is a torsion pair in MeCe, we

need to show that the following three statements hold:

(b1) HomC(Y, Z) = 0 for all Y ∈ TeCe(T (M)) and Z ∈ FeCe(T (M));

(b2) HomC(Y,−)|F = 0 implies Y ∈ TeCe(T (M));

(b3) HomC(−, Z)|T = 0 implies Z ∈ FeCe(T (M)).

Since T is an equivalence, (b) is obvious. �

Theorem 7.4. Assume that C is a basic coalgebra and an idempotent e ∈ C∗

defines a perfect localization. If M is a tilting eCe-comodule, then the following

holds for the C-comodule S(M):

(a) FC(S(M)) = Cogen(S(M));

(b) (TC(S(M)),FC(S(M))) is a torsion pair inMC .

P r o o f. It follows from Lemma 7.2 that the following conditions hold becauseM

is a tilting eCe-comodule.

(1) FeCe(M) = Cogen(M).

(2) (TeCe(M),FeCe(M)) is a torsion pair inMeCe, that is,

(2′) HomeCe(Y, Z) = 0 for all Y ∈ TeCe(M) and Z ∈ FeCe(M);

(2′′) HomeCe(Y,−)|FeCe(M) = 0 implies Y ∈ TeCe(M);

(2′′′) HomeCe(−, Z)|TeCe(M) = 0 implies Z ∈ FeCe(M).

(a) Let an eCe-comodule Z ∈ Cogen(M), then there is an eCe-comodule

monomorphism θ : Z → ML for some L. Since S is fully faithful, there is the

commutative diagram

Z
θ //

∼=

��

ML

∼=

��
S(Z)

ϕ // S(ML).
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Consequently, the C-comodule homomorphism ϕ : S(Z) → S(ML) is injective if and

only if θ is injective if and only if Ext1eCe(Z,M) = 0 if and only if Ext1C(S(Z), S(M))

= 0 by Lemma 3.8 (1), i.e., S(Z) ∈ FeCe(S(M)).

(b) In order to prove that (TC(S(M)),FC(S(M))) is a torsion pair in MC , we

need to check the following three conditions:

(b1) HomC(S(Y ), S(Z)) = 0 for all S(Y ) ∈ TC(S(M)) and S(Z) ∈ FC(S(M));

(b2) HomC(S(Y ),−)|FC(S(M)) = 0 implies S(Y ) ∈ TC(S(M));

(b3) HomC(−, S(Z))|TC(S(M)) = 0 implies S(Z) ∈ FC(S(M)).

Firstly, we prove (b1). Since S is fully faithful, by 2’ we get HomC(S(Y ), S(Z)) ∼=

HomeCe(Y, Z) = 0 for any Y ∈ TeCe(M), Z ∈ FeCe(M), where

S(Y ) ∈ TC(S(M)) = {S(X) ∈ MC ; HomC(S(Y ), S(M)) = 0},

S(Z) ∈ FC(S(M)) = {S(X) ∈ MC ; ExtC(S(Z), S(M)) = 0}.

Next, we prove (b2). Since M is a tilting right eCe-comodule, it follows that

FeCe(M) = Cogen(M). Since S is fully faithful, we get the commutative diagram,

see Diagram 4. This shows that HomC(S(Y ),−)|FC(S(M)) = 0 if and only if S(Y ) ∈

TC(S(M)). Now, we prove (b3). It follows from (2′′′) that HomeCe(−, Z)|TeCe(M) = 0

implies Z ∈ FeCe(M), i.e., ExteCe(Z,M) = 0. Since S is fully faithful, we have

HomC(S(−), S(Z))|TC(S(M)) = 0. By Lemma 3.6 (1), we obtain S(ExtC(Z,M)) =

ExtC(S(Z), S(M)) = 0. As a consequence, HomC(−, S(Z))|TC(S(M)) = 0 implies

ExtC(S(Z), S(M)) = 0, i.e., S(Z) ∈ FC(S(M)). �

Corollary 7.5. Assume that C is a basic coalgebra, an idempotent e ∈ C∗ defines

a perfect localization and X ∼= Ce is a quasi-finite injective cogenerator. If M is

a tilting right eCe-comodule, then the C-comodule S(M) satisfies the statements:

(a) FC(S(M)) = Cogen(S(M));

(b) (TC(S(M)),FC(S(M))) is a torsion pair inMC .

P r o o f. The necessity is obtained from Theorem 7.4. Sufficiency: By Lemma 7.3

and our assumption, we get that

(a) FeCe(TS(M)) = Cogen(TS(M));

(b) (TeCe(TS(M)),FeCe(TS(M))) is a torsion pair inMeCe.

Since TS ≃ 1MC/T , we have TS(M) ∼= M . Consequently,

(a) FeCe(M) = Cogen(M);

(b) (TeCe(M),FeCe(M) is a torsion pair inMeCe. �
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