Previous |  Up |  Next

Article

Keywords:
characterization; radial Minkowski additive operator; radial Minkowski homomorphism
Summary:
We give some characterizations for radial Minkowski additive operators and prove a new characterization of balls. Finally, we show the property of radial Minkowski homomorphism.
References:
[1] Abardia-Evéquoz, J., Colesanti, A., Gómez, E. Saorín: Minkowski additive operators under volume constraints. J. Geom. Anal. 28 (2018), 2422-2455. DOI 10.1007/s12220-017-9909-x | MR 3833799 | Zbl 1408.52023
[2] Abardia-Evéquoz, J., Colesanti, A., Gómez, E. Saorín: Minkowski valuations under volume constraints. Adv. Math. 333 (2018), 118-158. DOI 10.1016/j.aim.2018.05.033 | MR 3818074 | Zbl 1400.52007
[3] Alesker, S.: Continuous rotation invariant valuations on convex sets. Ann. Math. (2) 149 (1999), 977-1005. DOI 10.2307/121078 | MR 1709308 | Zbl 0941.52002
[4] Chen, B., Rota, G.-C.: Totally invariant set functions of polynomial type. Commun. Pure Appl. Math. 47 (1994), 187-197. DOI 10.1002/cpa.3160470203 | MR 1263127 | Zbl 0815.52009
[5] Colesanti, A., Ludwig, M., Mussnig, F.: Minkowski valuations on convex functions. Calc. Var. Partial Differ. Equ. 56 (2017), Article ID 162, 29 pages. DOI 10.1007/s00526-017-1243-4 | MR 3715395 | Zbl 1400.52014
[6] Dorrek, F.: Minkowski endomorphisms. Geom. Funct. Anal. 27 (2017), 466-488. DOI 10.1007/s00039-017-0405-z | MR 3655954 | Zbl 1372.52005
[7] Dulio, P., Gardner, R. J., Peri, C.: Characterizing the dual mixed volume via additive functionals. Indiana Univ. Math. J. 65 (2016), 69-91. DOI 10.1512/iumj.2016.65.5765 | MR 3466456 | Zbl 1352.52008
[8] Gardner, R. J.: A positive answer to the Busemann-Petty problem in three dimensions. Ann. Math. (2) 140 (1994), 435-447. DOI 10.2307/2118606 | MR 1298719 | Zbl 0826.52010
[9] Gardner, R. J.: Intersection bodies and the Busemann-Petty problem. Trans. Am. Math. Soc. 342 (1994), 435-445. DOI 10.1090/S0002-9947-1994-1201126-7 | MR 1201126 | Zbl 0801.52005
[10] Gardner, R. J., Koldobski, A., Schlumprecht, T.: An analytical solution to the Busemann-Petty problem on sections of convex bodies. Ann. Math. (2) 149 (1999), 691-703. DOI 10.2307/120978 | MR 1689343 | Zbl 0937.52003
[11] Grinberg, E., Zhang, G.: Convolutions, transforms, and convex bodies. Proc. Lond. Math. Soc., III. Ser. 78 (1999), 77-115. DOI 10.1112/S0024611599001653 | MR 1658156 | Zbl 0974.52001
[12] Guo, L., Jia, H.: The dual Blaschke addition. J. Geom. Anal. 30 (2020), 3026-3034. DOI 10.1007/s12220-019-00190-7 | MR 4105144 | Zbl 1440.52006
[13] Ji, L., Zeng, Z.: Some inequalities for radial Blaschke-Minkowski homomorphisms. Czech. Math. J. 67 (2017), 779-793. DOI 10.21136/CMJ.2017.0180-16 | MR 3697916 | Zbl 06770130
[14] Kiderlen, M.: Blaschke- and Minkowski-endomorphisms of convex bodies. Trans. Am. Math. Soc. 358 (2006), 5539-5564. DOI 10.1090/S0002-9947-06-03914-6 | MR 2238926 | Zbl 1111.52007
[15] Klain, D. A.: Star valuations and dual mixed volumes. Adv. Math. 121 (1996), 80-101. DOI 10.1006/aima.1996.0048 | MR 1399604 | Zbl 0858.52003
[16] Klain, D. A.: Invariant valuations on star-shaped sets. Adv. Math. 125 (1997), 95-113. DOI 10.1006/aima.1997.1601 | MR 1427802 | Zbl 0889.52007
[17] Ludwig, M.: Intersection bodies and valuations. Am. J. Math. 128 (2006), 1409-1428. DOI 10.1353/ajm.2006.0046 | MR 2275906 | Zbl 1115.52007
[18] Lutwak, E.: Dual mixed volumes. Pac. J. Math. 58 (1975), 531-538. DOI 10.2140/pjm.1975.58.531 | MR 0380631 | Zbl 0273.52007
[19] Lutwak, E.: Intersection bodies and dual mixed volumes. Adv. Math. 71 (1988), 232-261. DOI 10.1016/0001-8708(88)90077-1 | MR 0963487 | Zbl 0657.52002
[20] Schneider, R.: On Steiner point of convex bodies. Isr. J. Math. 9 (1971), 241-249. DOI 10.1007/BF02771589 | MR 0278187 | Zbl 0208.50402
[21] Schneider, R.: Equivariant endomorphisms of the space of convex bodies. Trans. Am. Math. Soc. 194 (1974), 53-78. DOI 10.1090/S0002-9947-1974-0353147-1 | MR 0353147 | Zbl 0287.52004
[22] Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory. Encyclopedia of Mathematics and its Applications 151. Cambridge University Press, Cambridge (2014). DOI 10.1017/CBO9781139003858 | MR 3155183 | Zbl 1287.52001
[23] Schuster, F. E.: Volume inequalities and additive maps of convex bodies. Mathematika 53 (2006), 211-234. DOI 10.1112/S0025579300000103 | MR 2343256 | Zbl 1129.52002
[24] Schuster, F. E.: Convolutions and multiplier transformations of convex bodies. Trans. Am. Math. Soc. 359 (2007), 5567-5591. DOI 10.1090/S0002-9947-07-04270-5 | MR 2327043 | Zbl 1156.52003
[25] Schuster, F. E.: Valuations and Busemann-Petty type problems. Adv. Math. 219 (2008), 344-368. DOI 10.1016/j.aim.2008.05.001 | MR 2435426 | Zbl 1146.52003
[26] Tradacete, P., Villanueva, I.: Radial continuous valuations on star bodies. J. Math. Anal. Appl. 454 (2017), 995-1018. DOI 10.1016/j.jmaa.2017.05.026 | MR 3658809 | Zbl 1368.52011
[27] Tradacete, P., Villanueva, I.: Continuity and representation of valuations on star bodies. Adv. Math. 329 (2018), 361-391. DOI 10.1016/j.aim.2018.02.021 | MR 3783417 | Zbl 1400.52015
[28] Villanueva, I.: Radial continuous rotation invariant valuations on star bodies. Adv. Math. 291 (2016), 961-981. DOI 10.1016/j.aim.2015.12.030 | MR 3459034 | Zbl 1338.52015
[29] Wang, W., Liu, L.: Fourier transform and valuations. J. Math. Anal. Appl. 470 (2019), 1167-1184. DOI 10.1016/j.jmaa.2018.10.056 | MR 3870609 | Zbl 1412.42013
[30] Zhang, G.: A positive solution to the Busemann-Petty problem in $\mathbb R^4$. Ann. Math. (2) 149 (1999), 535-543. DOI 10.2307/120974 | MR 1689339 | Zbl 0937.52004
[31] Zhao, C.-J.: On Blaschke-Minkowski homomorphisms and radial Blaschke-Minkowski homomorphisms. J. Geom. Anal. 26 (2016), 1523-1538. DOI 10.1007/s12220-015-9598-2 | MR 3472843 | Zbl 1350.52004
Partner of
EuDML logo