[1] Bertsekas, D. P., Tsitsiklis, J. W.:
Parallel and Distributed Computation: Numerical Methods. Prentice hall Englewood Cliffs, NJ 1989.
DOI |
MR 0896902
[2] Cai, D., He, X., Han, J., Huang, T. S.:
Graph regularized nonnegative matrix factorization for data representation. IEEE Trans. Pattern Analysis Machine Intell. 33 (2010), 1548-1560.
DOI
[3] Deng, W., Zeng, X., Hong, Y.:
Distributed computation for solving the sylvester equation based on optimization. IEEE Control Systems Lett. 4 (2019), 414-419.
DOI |
MR 4211320
[4] Godsil, Ch., Royle, G. F.:
Algebraic graph theory. Springer Science Business Media 207 (2013).
MR 1829620
[5] He, X., Kan, M.-Y., Xie, P., Chen, X.:
Comment-based multi-view clustering of web 2.0 items. In: Proc. 23rd International Conference on World wide web, 2014, pp. 771-782.
DOI
[6] Horst, R., Tuy, H.:
Global Optimization. Springer-Verlag, Berlin 1996.
DOI |
MR 1102239
[7] Huang, K., Sidiropoulos, N. D., Swami, A.:
Non-negative matrix factorization revisited: Uniqueness and algorithm for symmetric decomposition. IEEE Trans. Signal Process. 62 (2013), 211-224.
DOI |
MR 3187989
[8] Jain, P., Kar, P.:
Non-convex optimization for machine learning. arXiv preprint arXiv:1712.07897, 2017.
DOI
[9] Kim, H., Park, H.:
Nonnegative matrix factorization based on alternating non-negativity constrained least squares and active set method. SIAM J. Matrix Analysis Appl. 30 (2008), 713-730.
DOI |
MR 2421467
[10] Lee, D. L., Seung, H. S.:
Learning the parts of objects by non-negative matrix factorization. Nature 401 (1999), 788-791.
DOI
[11] Lee, D. S., Seung, H. S.: Algorithms for non-negative matrix factorization. Adv. Neural Inform. Process. Systems xx (2001), 556-562.
[12] Li, W., Zeng, X., Hong, Y., Ji, H.:
Distributed Design for nuclear norm minimization of linear matrix equation with constraints. IEEE Trans. Automat. Control(2020).
DOI |
MR 4210456
[13] Lin, Ch.-J.:
Projected gradient methods for nonnegative matrix factorization. Neural Comput. 19 (2007), 2756-2779.
DOI |
MR 2348161
[14] Liu, Ch., Yang, H.-Ch., Fan, J., He, L.-W., Wang, Y.-M.:
Distributed nonnegative matrix factorization for web-scale dyadic data analysis on mapreduce. In: Proc. 19th International Conference on World wide web (2010), pp. 681-690.
DOI
[15] Liu, J., Wang, Ch., Gao, J., Han, J.:
Multi-view clustering via joint nonnegative matrix factorization. In: Proc. 2013 SIAM International Conference on Data Mining, SIAM 2013, pp. 252-260.
DOI
[16] Nedic, A., A, Ozdaglar, Parrilo, P. A.:
Constrained consensus and optimization in multi-agent networks. IEEE Trans. Automat. Control 55 (2010), 922-938.
DOI |
MR 2654432
[17] Peterka, V.:
Bayesian system identification. In: Trends and Progress in System Identification (P. Eykhoff, ed.), Pergamon Press, Oxford 1981, pp. 239-304.
DOI |
MR 0607193 |
Zbl 0451.93059
[18] Qiu, Z., Liu, S., Xie, L.:
Distributed constrained optimal consensus of multi-agent systems. Automatica 68 (2016), 209-215.
DOI |
MR 3483686
[19] Ram, S. S., Nedić, A., Veeravalli, V. V.:
Distributed stochastic subgradient projection algorithms for convex optimization. J. Optim. Theory Appl. 147 (2010), 516-545.
DOI |
MR 2733992
[20] Shi, G., Anderson, B. D. O., Helmke, U.:
Network flows that solve linear equations. IEEE Trans. Automat. Control 62 (2017), 2659-2674.
DOI |
MR 3660554
[21] Wen, Z., Yin, W., Zhang, Y.:
Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm. Math. Programm. Comput. 4 (2012), 333-361.
DOI |
MR 3006618
[22] Xu, F., He, G.:
New algorithms for nonnegative matrix completion. Pacific J. Optim. 11 (2015), 459-469.
MR 3384550
[23] Yang, S., Liu, Q., Wang, J.:
A multi-agent system with a proportional-integral protocol for distributed constrained optimization. IEEE Trans. Automat. Control 62 (2016), 3461-3467.
DOI |
MR 3669466
[24] Yi, P., Hong, Y., Liu, F.:
Distributed gradient algorithm for constrained optimization with application to load sharing in power systems. Systems Control Lett. 83 (2015), 45-52.
DOI |
MR 3373270 |
Zbl 1327.93033
[25] Yin, J., Gao, L., Zhang, Z. M.:
Scalable nonnegative matrix factorization with block-wise updates. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Springer-Heidelberg, Berlin 2014, pp. 337-352.
DOI
[26] Yuan, D., Ho, D. W. C., Xu, S.:
Regularized primal-dual subgradient method for distributed constrained optimization. IEEE Trans. Cybernet. 46 (2015), 2109-2118.
DOI
[27] Zeng, X., Cao, K.:
Computation of linear algebraic equations with solvability verification over multi-agent networks. Kybernetika 53 (2017), 803-819.
DOI |
MR 3750104
[28] Zeng, X., Yi, P., Hong, Y.:
Distributed continuous-time algorithm for constrained convex optimizations via nonsmooth analysis approach. IEEE Trans. Automat. Control 62 (2016), 5227-5233.
DOI |
MR 3708893
[29] Zeng, X., Liang, S., Hong, Y., Chen, J.:
Distributed computation of linear matrix equations: An optimization perspective. IEEE Trans. Automat. Control 64 (2019), 1858-1873.
DOI |
MR 3951032