[1] Abbasi, N., Golshan, H. Mottaghi:
Caristi's fixed point theorem and its equivalences in fuzzy metric spaces. Kybernetika 52 (2016), 6, 966-979.
MR 3607855
[2] Amini-Harandi, A.:
Some generalizations of Caristi's fixed point theorem with applications to the fixed point theory of weakly contractive set-valued maps and the minimization problem. Nonlinear Anal. 72 (2010), 12, 4661-4665.
DOI |
MR 2639213
[3] Boyd, D. W., Wong, J. S. W.:
On nonlinear contractions. Proc. Amer. Math. Soc. 20 (1969), 458-464.
DOI |
MR 0239559
[5] Caristi, J., Kirk, W. A.:
Geometric fixed point theory and inwardness conditions. In: The geometry of metric and linear spaces (Proc. Conf., Michigan State Univ., East Lansing, Mich., 1974), pp. 74-83. Lecture Notes in Math., Vol. 490. Springer, Berlin 1975.
DOI 10.1007/BFb0081133 |
MR 0399968 |
Zbl 0315.54052
[6] Chang, S.-S., Cho, Y. J., Kang, S.-M.:
Nonlinear Operator Theory in Probablistic Metric Spaces. Nova Publishers, 2001.
MR 2018691
[7] George, A., Veeramani, P.:
On some results in fuzzy metric spaces. Fuzzy Sets and Systems 64 (1994), 3, 395-399.
DOI |
MR 1289545 |
Zbl 0843.54014
[9] Gregori, V., Miñana, J.-J., Morillas, S.:
Some questions in fuzzy metric spaces. Fuzzy Sets and Systems 204 (2012), 71-85.
DOI |
MR 2950797 |
Zbl 1259.54001
[10] Gregori, V., Morillas, S., Sapena, A.:
On a class of completable fuzzy metric spaces. Fuzzy Sets and Systems 161 (2010), 16, 2193-2205.
DOI |
MR 2652720 |
Zbl 1201.54011
[11] Hadzic, O., Pap, E.:
Fixed Point Theory in Probabilistic Metric Spaces. Springer Science and Business Media, 2013.
MR 1459163
[12] Jachymski, J. R.:
Caristi's fixed point theorem and selections of set-valued contractions. J. Math. Anal. Appl. 227 (1998), 1, 55-67.
DOI |
MR 1652882
[13] Khamsi, M. A.:
Remarks on Caristi's fixed point theorem. Nonlinear Anal. 71 (2009), 1-2, 227-231.
DOI |
MR 2518029
[14] Khamsi, M. A., Kirk, W. A.:
An Introduction to Metric Spaces and Fixed Point Theory. John Wiley and Sons, 2011.
MR 1818603
[15] Khamsi, M. A., Misane, D.:
Compactness of convexity structures in metrics paces. Math. Japon. 41 (1995), 321-326.
MR 1326965
[16] Klement, E., Mesiar, R.:
Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms. Elsevier Science, 2005.
MR 2166082
[17] Klement, E. P., Mesiar, R., Pap, E.:
A characterization of the ordering of continuous t-norms. Fuzzy Sets and Systems 86 (1997), 2, 189-195.
DOI |
MR 1437918
[18] Klement, E. P., Mesiar, R., Pap, E.:
Triangular norms. Trends in Logic-Studia Logica Library 8, Kluwer Academic Publishers, Dordrecht 2000.
MR 1790096 |
Zbl 1087.20041
[19] Klement, E. P., Mesiar, R., Pap, E.:
Triangular norms. position paper ii: general constructions and parameterized families. Fuzzy Sets and Systems 145 (2004), 3, 411-438.
DOI |
MR 2075838
[20] Klement, E. P., Mesiar, R., Pap, E.:
Triangular norms. position paper iii: continuous t-norms. Fuzzy Sets and Systems 145 (2004), 3, 439-454.
DOI |
MR 2075839
[21] Kolesárová, A.: A note on archimedean triangular norms. BUSEFAL 80 (1999), 57-60.
[22] Kramosil, I., Michálek, J.:
Fuzzy metrics and statistical metric spaces. Kybernetika 11 (1075), 5, 336-344.
MR 0410633 |
Zbl 0319.54002
[24] Moore, J. C.:
Mathematical Methods for Economic Theory 1. Springer Science and Business Media, 1999.
MR 1727001
[26] Schweizer, B., Sklar, A.:
Probabilistic Metric Spaces. North-Holland Series in Probability and Applied Mathematics, North-Holland Publishing Co., New York 1983.
MR 0790314 |
Zbl 0546.60010
[27] Sedghi, S., Shobkolaei, N., Altun, I.:
A new approach to Caristi's fixed point theorem on non-Archimedean fuzzy metric spaces. Iran. J. Fuzzy Syst. 12 (2015), 2, 137-143, 157.
MR 3363585
[28] Zeidler, E.:
Nonlinear functional analysis and its applications I (Fixed-point theorems). Springer-Verlag, New York 1986.
DOI |
MR 0816732
[29] Zermelo, E.:
Neuer Beweis für die Möglichkeit einer Wohlordnung. Math. Ann. 65 (1907), 1, 107-128.
DOI |
MR 1511462