Previous |  Up |  Next

Article

Keywords:
tracking control; preview control; nonlinear Lur'e system; linear matrix inequality
Summary:
In this paper, the tracking control problem for a class of discrete-time nonlinear Lur'e systems with time-varying delays and external disturbances is studied via a preview control method. First, a novel translation approach is introduced to construct the augmented error system for Lur'e systems. The output tracking problem is thereby transformed into a guaranteed cost $H_\infty$ controller design problem. To produce an integral control action that can eliminate the static error, a discrete integrator is included. Next, a memory state feedback controller is developed, and the sufficient conditions for asymptotic stability and guaranteed cost $H_\infty$ performance of the closed-loop system are established by applying a suitable Lyapunov-Krasovskii functional and the linear matrix inequality (LMI) technique. Based on this, the tracking control scheme with preview action for the original system is presented. Finally, the effectiveness of our proposed control method is illustrated via a numerical example.
References:
[1] Açikmeşe, B., Corless, M.: Stability analysis with quadratic Lyapunov functions: Some necessary and sufficient multiplier conditions. Systems Control Lett. 57 (2008), 1, 78-94. DOI 10.1016/j.sysconle.2007.06.018 | MR 2365307
[2] Birla, N., Swarup, A.: Optimal preview control: A review. Optim. Control Appl. Meth. 36(2015), 2, 241-268. DOI 10.1002/oca.2106 | MR 3322176
[3] Boyd, S., Ghaoui, L. E., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia, 1994. DOI 10.1137/1.9781611970777 | MR 1284712 | Zbl 0816.93004
[4] Cao, J., Sivasamy, R., Rakkiyappan, R.: Sampled-data $H_\infty$ synchronization of chaotic Lur'e systems with time delay. Circuits Syst. Signal Process. 35 (2016), 3, 811-835. DOI 10.1007/s00034-015-0105-6 | MR 3459136
[5] Chen, J., Park, J. H.: New versions of Bessel-Legendre inequality and their applications to systems with time-varying delay. Appl. Math. Comput. 375 (2020), 15, 125060. DOI 10.1016/j.amc.2020.125060 | MR 4064782
[6] Chua, L., Yang, L.: Cellular neural networks: theory. IEEE Trans. Circuits Syst. 35 (1988), 10, 1257-1272. DOI 10.1109/31.7600 | MR 0960777
[7] Delellis, P., Bernardo, M. di, Garofalo, F.: Adaptive pinning control of networks of circuits and systems in Lur'e form. IEEE Trans. Circuits Syst. -I: Reg. Papers 60 (2013), 11, 3033-3042. DOI 10.1109/tcsi.2013.2252714
[8] Guzelis, C., Chua, L.: Stability analysis of generalized celluar neural networks. Int. J. Circuit Theory Appl. 21 (1993), 1, 1-33. DOI 10.1002/cta.4490210102
[9] Gyurkovics, E.: Guaranteed cost control of discrete-time uncertain systems with both state and input delays. Int. J. Control 89 (2016), 10, 2073-2082. DOI 10.1080/00207179.2016.1148270 | MR 3568289
[10] Huang, H., Feng, G., Cao, J.: Exponential synchronization of chaotic Lur'e systems with delayed feedback control. Nonlinear Dyn. 57 (2009), 441-453. DOI 10.1007/s11071-008-9454-z | MR 2520223
[11] Katayama, T., Hirono, T.: Design of an optimal servomechanism with preview action and its dual problem. Int. J. Control 45 (1987), 2, 407-420. DOI 10.1080/00207178708933740
[12] Katayama, T., Ohki, T., Inoue, T., Kato, T.: Design of an optimal controller for a discrete-time system subject to previewable demand. Int. J. Control 41 (1985), 3, 677-699. DOI 10.1080/0020718508961156 | MR 0791513
[13] Khalil, H. K.: Nonlinear Systems. Prentice Hall: Upper Saddle River, New Jersey, 2002. Zbl 1194.93083
[14] Kim, K. K. K., Braatz, R. D.: Observer-based output feedback control of discrete-time Lur's systems with sector-bounded and slope-restricted nonlinearities. Int. J. Robust Nonlinear Control 24 (2014), 16, 2458-2472. DOI 10.1002/rnc.3003 | MR 3272002
[15] Kim, K. K. K., Braatz, R. D.: Robust static and fixed-order dynamic output feedback control of discrete-time parametric uncertain Lur's systems: Sequential SDP relaxation approaches. Optim. Control Appl. Meth. 38 (2017), 1, 36-58. DOI 10.1002/oca.2241 | MR 3608561
[16] Kojima, A.: $H_\infty$ controller design for preview and delayed systems. IEEE Trans. Autom. Control 60 (2015), 2, 404-419. DOI 10.1109/tac.2014.2354911 | MR 3310167
[17] Lee, T. H., Park, J. H.: Improved criteria for sampled-data synchronization of chaotic Lur'e systems using two new approaches. Nonlinear Anal. Hybrid Syst.24 (2017), 132-145. DOI 10.1016/j.nahs.2016.11.006 | MR 3624527
[18] Li, C., Chen, L., Aihara, K.: Synchronization of coupled nonidentical genetic oscillators. Phys. Biol. 3 (2006), 1, 37-44. DOI 10.1088/1478-3975/3/1/004
[19] Li, Z., Duan, Z., Chen, G.: Global synchronised regions of linearly coupled Lur'e systems. Int. J. Control 84 (2011), 2, 216-227. DOI 10.1080/00207179.2010.546882 | MR 2783574
[20] Liao, F., Cao, M., Hu, Z., An, P.: Design of an optimal preview controller for linear discrete-time causal descriptor systems. Int. J. Control 85 (2012), 10, 1616-1624. DOI 10.1080/00207179.2012.695804 | MR 2972724
[21] Liao, F., Ren, Z., Tomizuka, M., Wu, J.: Preview control for impulse-free continuous-time descriptor systems. Int. J. Control 88 (2015), 6, 1142-1149. DOI 10.1080/00207179.2014.996769 | MR 3337040
[22] Liu, Y., Lee, S.M.: Synchronization of chaotic Lur'e systems using sampled-data PD control. Nonlinear Dyn. 85 (2016), 2, 981-992. DOI 10.1007/s11071-016-2737-x | MR 3511417
[23] Liu, Y., Lee, S. M.: Synchronization criteria of chaotic Lur'e systems with delayed feedback PD control. Neurocomputing 189 (2016), 66-71. DOI 10.1016/j.neucom.2015.12.058
[24] Liu, M., Li, Z.: Robust consensus of Lur'e networks with uncertain communications. IET Control Theory Appl. 11 (2017), 6, 877-882. DOI 10.1049/iet-cta.2016.1205 | MR 3699768
[25] Liu, W., Wang, Y.: Robust observer-based absolute stabilization for Lur'e singularly perturbed systems with state delay. ISA Trans. 65 (2016), 1-8. DOI 10.1016/j.isatra.2016.07.005 | MR 3388946
[26] Madan, R. N.: Chua's Circuit: A Paradigm for Chaos. World Scientific, 1993. DOI 10.1142/9789812798855\_bmatter | MR 1321374
[27] Matsumoto, T.: A chaotic attractor from Chua's circuit. IEEE Trans. Circuits Syst. CAS 31 (1984), 12, 1055-1058. DOI 10.1109/tcs.1984.1085459 | MR 0764274
[28] Nasiri, A., Nguang, S. K., Swain, A., Almakhles, D. J.: Robust output feedback controller design of discrete-time Takagi-Sugeno fuzzy systems: a non-monotonic Lyapunov approach. IET Control Theory Appl. 10 (2016), 5, 545-553. DOI 10.1049/iet-cta.2015.0750 | MR 3497117
[29] Park, J. H., Ji, D. H., Won, S. C., Lee, S. M., Choi, S. J.: $H_\infty$ control of Lur'e systems with sector and slope restricted nonlinearities. Phys. Lett. A 373 (2009), 41, 3734-3740. DOI 10.1016/j.physleta.2009.08.018 | MR 2569017
[30] Park, J. H., Lee, T. H., Liu, Y., Chen, J.: Dynamic Systems with Time Delays: Stability and Control. Springer-Nature, 2019. DOI 10.1007/978-981-13-9254-2 | MR 3969950
[31] Sheridan, T. B.: Three models of preview control. IEEE Trans. on Human Factors in Electronics HFE 7 (1966), 2, 91-102. DOI 10.1109/thfe.1966.232329
[32] Song, Q., Liu, F., Cao, J., Lu, J.: Some simple criteria for pinning a Lur'e network with directed topology. IET Control Theory Appl. 8 (2014), 2, 131-138. DOI 10.1049/iet-cta.2013.0422 | MR 3184494
[33] Takaba, K.: Robust servomechanism with preview action for polytopic uncertain systems. Int. J. Robust Nonlinear Control 10 (2000), 2, 101-111. DOI 10.1002/(sici)1099-1239(200002)10:2<101::aid-rnc465>3.0.co;2-9 | MR 1740969
[34] Tang, Z., Park, J. H., Wang, Y., Zheng, W. X.: Synchronization on Lur'e cluster networks with proportional delay: impulsive effects method. IEEE Trans. Syst., Man, Cybern., Syst. 2019. DOI 10.1109/tsmc.2019.2943933
[35] Tomizuka, M., Rosenthal, D. E.: On the optimal digital state vector feedback controller with integral and preview actions. ASME J. Dyn. Sys. Meas. Control 101 (1979), 2, 172-178. DOI 10.1115/1.3426416
[36] Tsuchiya, T., Egami, T.: Digital Preview and Predictive Control. Beijing Science and Technology, Beijing, 1994.
[37] Xia, J., Park, J. H., Lee, T. H., Zhang, B.: $H_\infty$ tracking of uncertain stochastic time-delay systems: memory state-feedback controller design. Appl. Math. Comput. 249 (2014), 356-370. MR 3279427
[38] Yin, C., Zhong, S., Liu, X.: Novel delay-dependent stabilization criterion for Lur'e systems with sector-restricted nonlinearities and external disturbances via PD feedback approach. J. Optim. Theory Appl. 151 (2011), 1, 81-99. DOI 10.1007/s10957-011-9857-8 | MR 2836466
[39] Yu, X., Li, L.: Trajectory tracking control with preview action for a class of continuous-time Lur'e-type nonlinear systems. Adv. Differ. Equ. 293 (2020), 1-17. DOI 10.1186/s13662-020-02753-3 | MR 4111777
[40] Yu, X., Liao, F.: Preview tracking control for discrete-time nonlinear Lur'e systems with sector-bounded nonlinearities. Trans. Inst. Meas. Control 41 (2019), 10, 2726-2737. DOI 10.1177/0142331218808348
[41] Zhang, F., Trentelman, H. L., Feng, G., Scherpen, J. M. A.: Absolute stabilization of Lur'e systems via dynamic output feedback. Eur. J. Control 44(2018), 15-26. DOI 10.1016/j.ejcon.2018.09.015 | MR 3907449
[42] Zhao, Y., Duan, Z., Wen, G.: Robust consensus tracking of multi-agent systems with uncertain Lur'e-type non-linear dynamics. IET Control Theory Appl. 7 (2013), 9, 1249-1260. DOI 10.1049/iet-cta.2013.0095 | MR 3100552
[43] Zhen, Z.: Research development in preview control theory and applications. Acta Autom. Sin. 42 (2016), 2, 172-188.
[44] Zhu, X., Zhang, H., Xi, J.: Robust speed synchronization control for clutchless automated manual transmission systems in electric vehicles. Proc. IMechE. Part D: J. Automobile Engineering 229 (2015), 4, 424-436. DOI 10.1177/0954407014546431
Partner of
EuDML logo