[1] Boissard, E., Gouic, T. Le:
On the mean speed of convergence of empirical and occupation measures in Wasserstein distance. Annales de l'Institut Henry Poincaré, Probabilités et Statistiques 50 (2014), 539-563.
DOI |
MR 3189084
[2] Devroye, L., Györfi, L., Lugosi, G.:
A Probabilistic Theory of Pattern Recognition. Springer, New York 1996.
DOI |
MR 1383093
[3] Evgeniou, T., Poggio, T., Pontil, M., Verri, A.:
Regularization and statistical learning theory for data analysis. Comput. Statist. Data Anal. 38 (2002), 421-432.
DOI |
MR 1884873
[4] Fournier, N., Guillin, A.:
On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Related Fields 162 (2015), 707-738.
DOI |
MR 3383341
[5] Gordienko, E.:
A remark on stability in prediction and filtering problems. Izv. Akad. Nank SSR Tekhn. Kibernet. 3 (1978), 202-205.
MR 0536708
[6] Gryazin, Y. A., Klibanov, M. V., Lucas, T. R.:
Numerical solution of a subsurface imaging inverse problem. SIAM J. Appl. Math. 62 (2001), 664-683.
DOI |
MR 1870710
[7] Kaňková, V.:
An approximative solution of stochastic optimization problem. In: Trans. 8th Prague Conf. Academia, Prague 1978, pp. 349-353.
DOI |
MR 0536792
[8] Kaňková, V.:
Empirical estimates in stochastic programming via distribution tails. Kybernetika 46 (2010), 459-471.
MR 2676083
[9] Kaňková, V., Houda, M.:
Thin and heavy tails in stochastic programming. Kybernetika 51 (2015), 433-456.
DOI |
MR 3391678
[10] Rachev, S. T., Römisch, W.:
Quantitative stability and stochastic programming: the method of probabilistic metrics. Math. Oper. Res. 27 (2002), 792-818.
DOI |
MR 1939178
[11] Shafieezadeh-Abadeh, S., Esfahani, P. M.:
Regularization via mass transportation. J. Machine Learning Res. 20 (2019), 1-68.
MR 3990457
[12] Shapiro, A., Xu, H.:
Stochastic mathematical programs with equilibrium constrains, modeling and sample average approximation. Optimization 57 (2008), 395-418.
DOI |
MR 2412074
[13] Tikhonov, A. N., Arsenin, V. Y.:
Solutions of Ill-posed Problems. Winston and Sons, Washington DC 1977.
MR 0455365
[14] Vapnik, V. N.:
Statistical Learning Theory. Wiley and Sons, New York 1998.
MR 1641250
[15] Vapnik, V., Izmailov, R.:
Synergy of monotonic rules. J. Machine Learning Res. 17 (2016), 988-999.
MR 3555027