[1] Anco, S., Bluman, G.:
Direct construction method for conservation laws of partial differential equations. I. Examples of conservation law classifications. European J. Appl. Math., 13, 5, 2002, 545-566,
DOI 10.1017/S095679250100465X |
MR 1939160
[2] Anco, S., Bluman, G.:
Direct construction method for conservation laws of partial differential equations. II. General treatment. European J. Appl. Math., 13, 5, 2002, 567-585,
DOI 10.1017/S0956792501004661 |
MR 1939161
[3] Anco, S., Silva, P.L. da, Freire, I.L.:
A family of wave-breaking equations generalizing the Camassa--Holm and Novikov equations. J. Math. Phys., 56, 9, 2015, paper 091506,
DOI 10.1063/1.4929661 |
MR 3395277
[4] Bluman, G.W., Anco, S.:
Symmetry and Integration Methods for Differential Equations. 2002, Applied Mathematical Sciences 154. Springer, New York,
MR 1914342
[6] Bozhkov, Y., Freire, I.L., Ibragimov, N.:
Group analysis of the Novikov equation. Comput. Appl. Math., 33, 1, 2014, 193-202,
DOI 10.1007/s40314-013-0055-1 |
MR 3187981
[7] Brezis, H.:
Functional Analysis, Sobolev Spaces and Partial Differential Equations. 2011, Universitext. Springer, New York,
MR 2759829 |
Zbl 1220.46002
[9] Clarkson, P.A., Mansfield, E.L., Priestley, T.J.:
Symmetries of a class of nonlinear third-order partial differential equations. Math. Comput. Modelling., 25, 8-9, 1997, 195-212,
DOI 10.1016/S0895-7177(97)00069-1 |
MR 1465776
[10] Constantin, A., Escher, J.:
Wave breaking for nonlinear nonlocal shallow water equations. Acta Math., 181, 2, 1998, 229-243,
DOI 10.1007/BF02392586 |
MR 1668586
[12] Constantin, A.:
Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier, 50, 2, 2000, 321-362,
DOI 10.5802/aif.1757 |
MR 1775353
[13] Constantin, A., Escher, J.:
Global existence and blow-up for a shallow water equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26, 2, 1998, 303-328,
MR 1631589
[14] Silva, P.L. da, Freire, I.L.: Strict self-adjointness and shallow water models. arXiv:, 1312.3992, 2013, Preprint..
[15] Silva, P.L. da, Freire, I.L.:
On the group analysis of a modified Novikov equation. Interdisciplinary Topics in Applied Mathematics, Modeling and Computational Science, Springer Proceedings in Mathematics & Statistics, 117, 2015, 161-166, Springer, DOI: 10.1007/978-3-319-12307-3_23.
DOI 10.1007/978-3-319-12307-3_23 |
MR 3444170
[16] Silva, P.L. da, Freire, I.L.:
An equation unifying both Camassa--Holm and Novikov equations. Dynamical Systems and Differential Equations, Proceedings of the 10th AIMS International Conference, 2015, 304-311, American Institute of Mathematical Sciences, DOI: 10.3934/proc.2015.0304.
DOI 10.3934/proc.2015.0304 |
MR 3462461
[17] Silva, P.L. da, Freire, I.L.: Uma nova equação unificando quatro modelos físicos. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, 3, 2, 2015, In Portuguese..
[18] Silva, P.L. da, Freire, I.L., Sampaio, J.C.S.:
A family of wave equations with some remarkable properties. Proc. A, 474, 2210, 2018, paper 20170763,
MR 3782781
[19] Silva, P.L. da, Freire, I.L.:
Well-posedness, travelling waves and geometrical aspects of generalizations of the Camassa--Holm equation. J. Differential Equations, 267, 9, 2019, 5318-5369,
DOI 10.1016/j.jde.2019.05.033 |
MR 3991561
[20] Degasperis, A., Procesi, M.:
Asymptotic integrability. Symmetry and Perturbation Theory, World Scientific Publishing, River Edge, NJ, 1999, 23-37,
MR 1844104
[21] Degasperis, A., Holm, D.D., Hone, A.N.W.:
A new integrable equation with peakon solutions. Theoret. and Math. Phys., 133, 2, 2002, 1463-1474, Translated from Russian..
DOI 10.1023/A:1021186408422 |
MR 2001531
[22] Degasperis, A., Holm, D.D., Hone, A.N.W.:
Integrable and non-integrable equations with peakons. Nonlinear Physics: Theory and Experiment, II (Gallipoli, 2002), 2003, 37-43, World Scientific Publishing, River Edge, NJ, See arXiv:nlin/0209008..
MR 2028761
[23] Escher, J.:
Breaking water waves. Nonlinear Water Waves, Lecture Notes in Mathematics, vol. 2158, 2016, 83-119, Springer, Switzerland, DOI: 10.1007/978-3-319-31462-4_2.
DOI 10.1007/978-3-319-31462-4_2 |
MR 3524896
[24] Fokas, A.S., Fuchssteiner, B.:
Sympletic structures, their Bäcklund transformations and hereditary symmetries. Phys. D, 4, 1, 1981/82, 47-66,
MR 0636470
[25] Folland, G.B.:
Introduction to partial differential equations. Second edition. 1995, Princeton University Press, Princeton, NJ,
MR 1357411
[26] Hay, M., Hone, A.N.W., Novikov, V.S., Wang, J.P.:
Remarks on certain two-component systems with peakon solutions. J. Geom. Mech., 11, 4, 2019, 561-573,
DOI 10.3934/jgm.2019028 |
MR 4043678
[27] Himonas, A.A., Holliman, C.:
The Cauchy problem for a generalized Camassa--Holm equation. Adv. Differential Equations, 19, 1-2, 2014, 161-200,
MR 3161659
[30] Hone, A.N.W., Lundmark, H., Szmigielski, J.:
Explicit multipeakon solutions of Novikov's cubically nonlinear integrable Camassa--Holm type equation. Dyn. Partial Differ. Equ., 6, 3, 2009, 253-289,
DOI 10.4310/DPDE.2009.v6.n3.a3 |
MR 2569508
[31] Hunter, J.K., Nachtergaele, B.:
Applied Analysis. 2005, World Scientific Publishing, Singapore,
MR 1829589
[32] Ibragimov, N.H.:
Transformation Groups Applied to Mathematical Physics. 1985, Mathematics and its Applications (Soviet Series), D. Reidel Publishing Co., Dordrecht, Translated from Russian..
MR 0785566
[33] Ibragimov, N.H.:
Elementary Lie Group Analysis and Ordinary Differential Equations. 1999, Wiley Series in Mathematical Methods in Practice, 4. John Wiley & Sons, Chichester,
MR 1679646
[34] Krasil'shchik, J., Verbovetsky, A., Vitolo, R.:
The Symbolic Computation of Integrability Structures for Partial Differential Equations. 2017, Texts and Monographs in Symbolic Computation. Springer, Cham,
MR 3753682
[38] Mikhailov, A.V., Sokolov, V.V.:
Symmetries of differential equations and the problem of integrability. Integrability, Lecture Notes in Phys., vol. 767, 2009, 19-88, Springer, Berlin,
DOI 10.1007/978-3-540-88111-7_2 |
MR 2867546
[40] Olver, P.J.:
Evolution equations possessing infinitely many symmetries. J. Mathematical Phys., 18, 6, 1977, 1212-1215,
DOI 10.1063/1.523393 |
MR 0521611
[41] Olver, P.J.:
Applications of Lie Groups to Differential Equations. Second edition. 1993, Graduate Texts in Mathematics, 107. Springer-Verlag, New York,
MR 1240056
[44] M.E.Taylor:
Partial Differential Equations I. Basic Theory. Second edition. 2011, Applied Mathematical Sciences, 115. Springer, New York,
MR 2744150