[4] Borel, É.:
Sur quelques points de la théorie des fonctions. Ann. scient. de l'École Norm. Sup., 3, 12, 1895, 9-55,
MR 1508908
[5] Carathéodory, C.: Über die Variationsrechnung bei mehrfachen Integralen. Acta Szeged Sect. Scient. Mathem., 4, 1929, 193-216,
[6] Crampin, M., Saunders, D.J.:
The Hilbert--Carathéodory and Poincaré--Cartan forms for higher-order multiple-integral variational problems. Houston J. Math., 30, 3, 2004, 657-689,
MR 2083869
[7] Do, T.: The inverse problem in the calculus of variations via exterior differential systems. 2016, Ph.D. Thesis, La Trobe University, Melbourne, Australia.
[9] Ehresmann, C.:
Les prolongements d'une variété différentiable: calcul des jets, prolongement principal. C. R. Acad. Sci. Paris, 233, 1951, 598-600,
MR 0044198
[10] Ehresmann, C.:
Les prolongements d'une variété différentiable: l'espace des jets d'ordre $r$ de $V_n$ dans $V_m$. C. R. Acad. Sci. Paris, 233, 1951, 777-779,
MR 0045435
[11] Ehresmann, C.:
Les prolongements d'une variété différentiable: transitivité des prolongements. C. R. Acad. Sci. Paris, 233, 1951, 1081-1083,
MR 0045436
[12] Ehresmann, C.:
Les prolongements d'une variété différentiable: éléments de contact et éléments d'enveloppe. C. R. Acad. Sci. Paris, 234, 1952, 1028-1030,
MR 0046737
[13] Ehresmann, C.:
Les prolongements d'une variété différentiable: covariants différentiels et prolongements d'une structure infinitésimale. C. R. Acad. Sci. Paris, 234, 1952, 1424-1425,
MR 0047385
[14] Frölicher, A., Nijenhuis, A.:
Theory of vector valued differential forms. Part I. Ind. Math., 18, 1056, 338-360,
MR 0082554
[15] Goldschmidt, H., Sternberg, S.:
The Hamilton--Cartan formalism in the calculus of variations. Ann. Inst, Fourier, 23, 1, 1973, 203-267,
DOI 10.5802/aif.451 |
MR 0341531
[16] Kolář, I., Michor, P.W., Slovak, J.:
Natural operations in differential geometry. 1993, Springer,
MR 1202431
[17] Kolář, I.:
Natural operators related with the variational calculus. Differential Geometry and its Applications, Opava 1992, 1993, 461-472, Silesian University, Opava,
MR 1255562
[18] Kolář, I.:
Weil bundles as generalized jet space. Handbook of Global Analysis, ed. D. Krupka and D.J. Saunders, 2007, 625-665, Elsevier,
MR 2389643
[20] Kriegl, A., Michor, P.:
The Convenient Setting of Global Analysis. 1997, AMS Mathematical Surveys and Monographs 53,
MR 1471480 |
Zbl 0889.58001
[23] Krupka, D.:
Variational sequences on finite order jet spaces. Differential Geometry and its Applications, Brno 1989, 1990, 236-254, World Scientific,
MR 1062026
[26] Libermann, P.:
Introduction to the theory of semi-holonomic jets. Arch. Math. (Brno), 33, 1997, 173-189,
MR 1478771
[27] Libermann, P.:
Charles Ehresmann's concepts in differential geometry. Geometry and Topology of Manifolds, Banach Center Publications, vol. 76, 2007, 35-50, Institute of Mathematics, Polish Academy of Sciences, Warszawa,
MR 2342844
[28] Manno, G., Vitolo, R.:
Variational sequences on finite order jets of submanifolds. Differential Geometry and its Applications, Opava, 2001, 2001, 435-447, Silesian University at Opava,
MR 1978797
[32] Saunders, D.J.:
Jet manifolds and natural bundles. Handbook of Global Analysis, ed. D. Krupka and D.J. Saunders, 2007, 1037-1070, Elsevier,
MR 2389651
[34] Saunders, D.J.:
Horizontal forms on jet bundles. Balkan J. Geom. Appl., 15, 1, 2010, 149-154,
MR 2608517
[36] Saunders, D.J.:
On Lagrangians with reduced-order Euler--Lagrange equations. SIGMA, 14, 2018, 089, 13 pages,
MR 3846852
[38] Vitolo, R.:
Variational sequences. Handbook of Global Analysis, ed. D. Krupka and D.J. Saunders, 2007, 1117-1160, Elsevier,
MR 2389653
[39] Weil, A.:
Théorie des points proches sur les variétés différentielles. Colloque de topologie et géométrie différentielle, 1953, 111-117, Strasbourg,
MR 0061455