Previous |  Up |  Next

Article

Keywords:
Jets; Calculus of variations
Summary:
We review the approach to the calculus of variations using Ehresmann's theory of jets. We describe different types of jet manifold, different types of variational problem and different cohomological structures associated with such problems.
References:
[1] Anderson, I.M.: The variational bicomplex. Technical report of Utah State University, 1989, available at https://ncatlab.org/nlab/files/AndersonVariationalBicomplex.pdf
[2] Anderson, I.M., Duchamp, T.E.: Variational principles for second-order quasi-linear scalar equations. J. Diff. Eq., 51, 1, 1984, 1-47, DOI 10.1016/0022-0396(84)90100-1 | MR 0727029
[3] Betounes, D.E.: Extensions of the classical Cartan form. Phys. Rev. D, 29, 1984, 599-606, DOI 10.1103/PhysRevD.29.599 | MR 0734285
[4] Borel, É.: Sur quelques points de la théorie des fonctions. Ann. scient. de l'École Norm. Sup., 3, 12, 1895, 9-55, MR 1508908
[5] Carathéodory, C.: Über die Variationsrechnung bei mehrfachen Integralen. Acta Szeged Sect. Scient. Mathem., 4, 1929, 193-216,
[6] Crampin, M., Saunders, D.J.: The Hilbert--Carathéodory and Poincaré--Cartan forms for higher-order multiple-integral variational problems. Houston J. Math., 30, 3, 2004, 657-689, MR 2083869
[7] Do, T.: The inverse problem in the calculus of variations via exterior differential systems. 2016, Ph.D. Thesis, La Trobe University, Melbourne, Australia.
[8] Do, T., Prince, G.: New progress in the inverse problem in the calculus of variations. Diff. Geom. Appl., 45, 2016, 148-179, DOI 10.1016/j.difgeo.2016.01.005 | MR 3457392
[9] Ehresmann, C.: Les prolongements d'une variété différentiable: calcul des jets, prolongement principal. C. R. Acad. Sci. Paris, 233, 1951, 598-600, MR 0044198
[10] Ehresmann, C.: Les prolongements d'une variété différentiable: l'espace des jets d'ordre $r$ de $V_n$ dans $V_m$. C. R. Acad. Sci. Paris, 233, 1951, 777-779, MR 0045435
[11] Ehresmann, C.: Les prolongements d'une variété différentiable: transitivité des prolongements. C. R. Acad. Sci. Paris, 233, 1951, 1081-1083, MR 0045436
[12] Ehresmann, C.: Les prolongements d'une variété différentiable: éléments de contact et éléments d'enveloppe. C. R. Acad. Sci. Paris, 234, 1952, 1028-1030, MR 0046737
[13] Ehresmann, C.: Les prolongements d'une variété différentiable: covariants différentiels et prolongements d'une structure infinitésimale. C. R. Acad. Sci. Paris, 234, 1952, 1424-1425, MR 0047385
[14] Frölicher, A., Nijenhuis, A.: Theory of vector valued differential forms. Part I. Ind. Math., 18, 1056, 338-360, MR 0082554
[15] Goldschmidt, H., Sternberg, S.: The Hamilton--Cartan formalism in the calculus of variations. Ann. Inst, Fourier, 23, 1, 1973, 203-267, DOI 10.5802/aif.451 | MR 0341531
[16] Kolář, I., Michor, P.W., Slovak, J.: Natural operations in differential geometry. 1993, Springer, MR 1202431
[17] Kolář, I.: Natural operators related with the variational calculus. Differential Geometry and its Applications, Opava 1992, 1993, 461-472, Silesian University, Opava, MR 1255562
[18] Kolář, I.: Weil bundles as generalized jet space. Handbook of Global Analysis, ed. D. Krupka and D.J. Saunders, 2007, 625-665, Elsevier, MR 2389643
[19] Kolář, I.: On special types of nonholonomic contact elements. Diff. Geom. Appl., 29, 5, 2011, 647-652, DOI 10.1016/j.difgeo.2011.03.007 | MR 2831821 | Zbl 1229.58005
[20] Kriegl, A., Michor, P.: The Convenient Setting of Global Analysis. 1997, AMS Mathematical Surveys and Monographs 53, MR 1471480 | Zbl 0889.58001
[21] Krbek, M., Musilová, J.: Representation of the variational sequence by differential forms. Acta Appl. Math., 88, 2005, 177-199, DOI 10.1007/s10440-005-4980-x | MR 2169038
[22] Krupka, D.: A map associated to the Lepagean forms in the calculus of variations. Czech. Math. J., 27, 1977, 114-118, DOI 10.21136/CMJ.1977.101449 | MR 2523431
[23] Krupka, D.: Variational sequences on finite order jet spaces. Differential Geometry and its Applications, Brno 1989, 1990, 236-254, World Scientific, MR 1062026
[24] Krupka, D.: The contact ideal. Diff. Geom. Appl., 5, 1995, 257-276, DOI 10.1016/0926-2245(95)92849-Z | MR 1353059
[25] Krupka, D., Musilová, J.: Trivial Lagrangians in field theory. Diff. Geom. Appl., 9, 1998, 293-305, DOI 10.1016/S0926-2245(98)00023-0 | MR 1661189
[26] Libermann, P.: Introduction to the theory of semi-holonomic jets. Arch. Math. (Brno), 33, 1997, 173-189, MR 1478771
[27] Libermann, P.: Charles Ehresmann's concepts in differential geometry. Geometry and Topology of Manifolds, Banach Center Publications, vol. 76, 2007, 35-50, Institute of Mathematics, Polish Academy of Sciences, Warszawa, MR 2342844
[28] Manno, G., Vitolo, R.: Variational sequences on finite order jets of submanifolds. Differential Geometry and its Applications, Opava, 2001, 2001, 435-447, Silesian University at Opava, MR 1978797
[29] Olver, P.J.: Equivalence and the Cartan form. Acta Appl. Math., 31, 1993, 99-136, DOI 10.1007/BF00990539 | MR 1223167
[30] Saunders, D.J.: The geometry of jet bundles. 1989, Cambridge, MR 0989588 | Zbl 0665.58002
[31] Saunders, D.J.: A note on Legendre transformations. Diff. Geom. Appl., 1, 1991, 109-122, DOI 10.1016/0926-2245(91)90025-5 | MR 1244438
[32] Saunders, D.J.: Jet manifolds and natural bundles. Handbook of Global Analysis, ed. D. Krupka and D.J. Saunders, 2007, 1037-1070, Elsevier, MR 2389651
[33] Saunders, D.J.: Homogeneous variational complexes and bicomplexes. J. Geom. Phys., 59, 2009, 727-739, DOI 10.1016/j.geomphys.2009.03.001 | MR 2510165 | Zbl 1168.58006
[34] Saunders, D.J.: Horizontal forms on jet bundles. Balkan J. Geom. Appl., 15, 1, 2010, 149-154, MR 2608517
[35] Saunders, D.J.: Double structures and jets. Diff. Geom. Appl., 30, 1, 2012, 59-64, DOI 10.1016/j.difgeo.2011.11.006 | MR 2871705
[36] Saunders, D.J.: On Lagrangians with reduced-order Euler--Lagrange equations. SIGMA, 14, 2018, 089, 13 pages, MR 3846852
[37] Urban, Z., Krupka, D.: The Zermelo conditions and higher order homogeneous functions. Publ. Math. Debrecen, 82, 1, 2013, 59-76, DOI 10.5486/PMD.2013.5265 | MR 3034368
[38] Vitolo, R.: Variational sequences. Handbook of Global Analysis, ed. D. Krupka and D.J. Saunders, 2007, 1117-1160, Elsevier, MR 2389653
[39] Weil, A.: Théorie des points proches sur les variétés différentielles. Colloque de topologie et géométrie différentielle, 1953, 111-117, Strasbourg, MR 0061455
Partner of
EuDML logo