Previous |  Up |  Next

Article

Keywords:
Inverse problem in the calculus of variations; Helmholtz conditions; Exterior differential systems; Lagrangian system.
Summary:
We deal with the problem of determining the existence and uniqueness of Lagrangians for systems of $n$ second order ordinary differential equations. A number of recent theorems are presented, using exterior differential systems theory (EDS). In particular, we indicate how to generalise Jesse Douglas's famous solution for $n=2$. We then examine a new class of solutions in arbitrary dimension $n$ and give some non-trivial examples in dimension 3.
References:
[1] Aldridge, J.E.: Aspects of the Inverse Problem in the Calculus of Variations. 2003, La Trobe University, Australia,
[2] Aldridge, J.E., Prince, G. E., Sarlet, W., Thompson, G.: An EDS approach to the inverse problem in the calculus of variations. J. Math. Phys., 47, 2006, DOI 10.1063/1.2358000 | MR 2268874
[3] Anderson, I., Thompson, G.: The inverse problem of the calculus of variations for ordinary differential equations. Memoirs Amer. Math. Soc., 98, 473, 1992, DOI 10.1090/memo/0473 | MR 1115829 | Zbl 0760.49021
[4] Bryant, R.L., Chern, S.S., Gardner, R.B., Goldschmidt, H.L., Griffiths, P.A.: Exterior Differential Systems. 1991, Springer, MR 1083148
[5] Crampin, M., Martínez, E., Sarlet, W.: Linear connections for systems of second--order ordinary differential equations. Ann. Inst. H. Poincaré Phys. Théor., 65, 1996, 223-249, MR 1411267
[6] Crampin, M., Prince, G.E., Sarlet, W., Thompson, G.: The inverse problem of the calculus of variations: separable systems. Acta Appl. Math., 57, 1999, 239-254, DOI 10.1023/A:1006238108507 | MR 1722045
[7] Crampin, M., Prince, G.E., Thompson, G.: A geometric version of the Helmholtz conditions in time-dependent Lagrangian dynamics. J. Phys. A: Math. Gen., 17, 1984, 1437-1447, DOI 10.1088/0305-4470/17/7/011 | MR 0748776
[8] Crampin, M., Sarlet, W., Martínez, E., Byrnes, G.B., Prince, G.E.: Toward a geometrical understanding of Douglas's solution of the inverse problem in the calculus of variations. Inverse Problems, 10, 1994, 245-260, DOI 10.1088/0266-5611/10/2/005 | MR 1269007
[9] Do., T.: The Inverse Problem in the Calculus of Variations via Exterior Differential Systems. 2016, La Trobe University, Australia, MR 0879421
[10] Do, T., Prince, G.E.: New progress in the inverse problem in the calculus of variations. Diff. Geom. Appl., 45, 2016, 148-179, DOI 10.1016/j.difgeo.2016.01.005 | MR 3457392
[11] Douglas, J.: Solution of the inverse problem of the calculus of variations. Trans. Am. Math. Soc., 50, 1941, 71-128, DOI 10.1090/S0002-9947-1941-0004740-5 | MR 0004740 | Zbl 0025.18102
[12] Helmholtz, H.: Über der physikalische Bedeutung des Princips der kleinsten Wirkung. J. Reine Angew. Math., 100, 1887, 137-166, MR 1580086
[13] Henneaux, M.: On the inverse problem of the calculus of variations. J. Phys. A: Math. Gen., 15, 1982, L93-L96, DOI 10.1088/0305-4470/15/3/002 | MR 0653398
[14] Henneaux, M., Shepley, L. C.: Lagrangians for spherically symmetric potentials. J. Math. Phys., 23, 1988, 2101-2107, DOI 10.1063/1.525252 | MR 0680007
[15] Hirsch, A.: Die Existenzbedingungen des verallgemeinterten kinetischen Potentialen. Math. Ann., 50, 1898, 429-441, DOI 10.1007/BF01448077 | MR 1511006
[16] Jerie, M., Prince, G.E.: Jacobi fields, linear connections for arbitrary second order ODE's. J. Geom. Phys., 43, 2002, 351-370, DOI 10.1016/S0393-0440(02)00030-X | MR 1929913
[17] Krupková, O., Prince, G.E.: Second order ordinary differential equation in jet bundles, the inverse problem of the calculus of variation. 2008, in: HandBook of Global Analysis, Elsevier, MR 2389647
[18] Massa, E., Pagani, E.: Jet bundle geometry, dynamical connections,, the inverse problem of Lagrangian mechanics. Ann. Inst. Henri Poincaré, Phys. Theor., 61, 1994, 17-62, MR 1303184
[19] Morandi, G., Ferrario, C., Vecchio, G. Lo, Marmo, G., Rubano, C.: The inverse problem in the calculus of variations, the geometry of the tangent bundle. Phys. Rep., 188, 1990, 147-284, DOI 10.1016/0370-1573(90)90137-Q | MR 1050526
[20] Sarlet, W.: The Helmholtz conditions revisited. A new approach to the inverse problem of Lagrangian dynamics. J. Phys. A: Math. Gen., 15, 1982, 1503-1517, DOI 10.1088/0305-4470/15/5/013 | MR 0656831 | Zbl 0537.70018
[21] Sarlet, W., Crampin, M., Martínez, E.: The integrability conditions in the inverse problem of the calculus of variations for second-order ordinary differential equations. Acta Appl. Math., 54, 1998, 233-273, DOI 10.1023/A:1006102121371 | MR 1671779
[22] Sarlet, W., Thompson, G., Prince, G.E.: The inverse problem of the calculus of variations: the use of geometrical calculus in Douglas's analysis. Trans. Amer. Math. Soc., 354, 2002, 2897-2919, DOI 10.1090/S0002-9947-02-02994-X | MR 1895208
[23] Sonin, N. Ya.: On the definition of maximal, minimal properties. Warsaw Univ. Izvestiya, 1--2, 1886, 1-68,
Partner of
EuDML logo