[1] Aldridge, J.E.: Aspects of the Inverse Problem in the Calculus of Variations. 2003, La Trobe University, Australia,
[2] Aldridge, J.E., Prince, G. E., Sarlet, W., Thompson, G.:
An EDS approach to the inverse problem in the calculus of variations. J. Math. Phys., 47, 2006,
DOI 10.1063/1.2358000 |
MR 2268874
[4] Bryant, R.L., Chern, S.S., Gardner, R.B., Goldschmidt, H.L., Griffiths, P.A.:
Exterior Differential Systems. 1991, Springer,
MR 1083148
[5] Crampin, M., Martínez, E., Sarlet, W.:
Linear connections for systems of second--order ordinary differential equations. Ann. Inst. H. Poincaré Phys. Théor., 65, 1996, 223-249,
MR 1411267
[6] Crampin, M., Prince, G.E., Sarlet, W., Thompson, G.:
The inverse problem of the calculus of variations: separable systems. Acta Appl. Math., 57, 1999, 239-254,
DOI 10.1023/A:1006238108507 |
MR 1722045
[7] Crampin, M., Prince, G.E., Thompson, G.:
A geometric version of the Helmholtz conditions in time-dependent Lagrangian dynamics. J. Phys. A: Math. Gen., 17, 1984, 1437-1447,
DOI 10.1088/0305-4470/17/7/011 |
MR 0748776
[8] Crampin, M., Sarlet, W., Martínez, E., Byrnes, G.B., Prince, G.E.:
Toward a geometrical understanding of Douglas's solution of the inverse problem in the calculus of variations. Inverse Problems, 10, 1994, 245-260,
DOI 10.1088/0266-5611/10/2/005 |
MR 1269007
[9] Do., T.:
The Inverse Problem in the Calculus of Variations via Exterior Differential Systems. 2016, La Trobe University, Australia,
MR 0879421
[12] Helmholtz, H.:
Über der physikalische Bedeutung des Princips der kleinsten Wirkung. J. Reine Angew. Math., 100, 1887, 137-166,
MR 1580086
[14] Henneaux, M., Shepley, L. C.:
Lagrangians for spherically symmetric potentials. J. Math. Phys., 23, 1988, 2101-2107,
DOI 10.1063/1.525252 |
MR 0680007
[17] Krupková, O., Prince, G.E.:
Second order ordinary differential equation in jet bundles, the inverse problem of the calculus of variation. 2008, in: HandBook of Global Analysis, Elsevier,
MR 2389647
[18] Massa, E., Pagani, E.:
Jet bundle geometry, dynamical connections,, the inverse problem of Lagrangian mechanics. Ann. Inst. Henri Poincaré, Phys. Theor., 61, 1994, 17-62,
MR 1303184
[19] Morandi, G., Ferrario, C., Vecchio, G. Lo, Marmo, G., Rubano, C.:
The inverse problem in the calculus of variations, the geometry of the tangent bundle. Phys. Rep., 188, 1990, 147-284,
DOI 10.1016/0370-1573(90)90137-Q |
MR 1050526
[21] Sarlet, W., Crampin, M., Martínez, E.:
The integrability conditions in the inverse problem of the calculus of variations for second-order ordinary differential equations. Acta Appl. Math., 54, 1998, 233-273,
DOI 10.1023/A:1006102121371 |
MR 1671779
[22] Sarlet, W., Thompson, G., Prince, G.E.:
The inverse problem of the calculus of variations: the use of geometrical calculus in Douglas's analysis. Trans. Amer. Math. Soc., 354, 2002, 2897-2919,
DOI 10.1090/S0002-9947-02-02994-X |
MR 1895208
[23] Sonin, N. Ya.: On the definition of maximal, minimal properties. Warsaw Univ. Izvestiya, 1--2, 1886, 1-68,