Previous |  Up |  Next

Article

Keywords:
Crystallographic groups; Pre-Lie algebras; Post-Lie algebras
Summary:
This survey on crystallographic groups, geometric structures on Lie groups and associated algebraic structures is based on a lecture given in the Ostrava research seminar in $2017$.
References:
[1] Abels, H., Margulis, G. A., Soifer, G. A.: Properly discontinuous groups of affine transformations with orthogonal linear part. C. R. Acad. Sci. Paris, 324, 253-258, DOI 10.1016/S0764-4442(99)80356-5 | MR 1438395
[2] Abels, H., Margulis, G. A., Soifer, G. A.: The Auslander conjecture for groups leaving a form of signature $(n-2,2)$ invariant. Israel J. Math., 148, 2005, 11-21, DOI 10.1007/BF02775430 | MR 2191222
[3] Auslander, L.: The structure of complete locally affine manifolds. Topology, 3, 1964, 131-139, DOI 10.1016/0040-9383(64)90012-6 | MR 0161255
[4] Auslander, L.: An Account of the Theory of Crystallographic Groups. Proceedings of the American Mathematical Society, 16, 6, 1965, 1230-1236, DOI 10.1090/S0002-9939-1965-0185012-7 | MR 0185012
[5] Auslander, L.: Simply transitive groups of affine motions. Amer. J. Math., 99, 4, 1977, 809-826, DOI 10.2307/2373867 | MR 0447470
[6] Baues, O.: Left-symmetric Algebras for gl(n). Trans. Amer. Math. Soc., 351, 7, 1999, 2979-2996, DOI 10.1090/S0002-9947-99-02315-6 | MR 1608273
[7] Benkart, G., Kostrikin, A., Kuznetsov, M.: Finite-dimensional simple Lie algebras with a nonsingular derivation. J. Algebra, 171, 3, 1995, 894-916, DOI 10.1006/jabr.1995.1041 | MR 1315926
[8] Benzécri, J. P.: Variétés localement affines. Thèse, Princeton Univ. , Princeton, N. J., 1955, MR 2612352
[9] Bieberbach, L.: Über die Bewegungsgruppen der Euklidischen Räume (German). Math. Ann., 70, 3, 1911, 297-336, DOI 10.1007/BF01564500 | MR 1511623
[10] Bieberbach, L.: Über die Bewegungsgruppen der Euklidischen Räume. Die Gruppen mit einem endlichen Fundamentalbereich (German). Math. Ann., 72, 3, 1912, 400-412, DOI 10.1007/BF01456724 | MR 1511704
[11] Benoist, Y.: Une nilvariété non affine. J. Diff. Geom., 41, 1995, 21-52, MR 1316552
[12] Brown, H., Bülow, R., Neubüser, J., Wondratschek, H., Zassenhaus, H.: Crystallographic groups of four-dimensional space. 1978, Wiley Monographs in Crystallography, Wiley-Interscience, New York-Chichester-Brisbane, MR 0484179
[13] Burde, D.: Left-symmetric structures on simple modular Lie algebras. Journal of Algebra, 169, 1, 1994, 112-138, DOI 10.1006/jabr.1994.1275 | MR 1296585
[14] Burde, D., Grunewald, F.: Modules for certain Lie algebras of maximal class. Journal of Pure and Applied Algebra, 99, 3, 1995, 239-254, DOI 10.1016/0022-4049(94)00002-Z | MR 1332900
[15] Burde, D.: Left-invariant affine structures on reductive Lie groups. Journal of Algebra, 181, 3, 1996, 884-902, DOI 10.1006/jabr.1996.0151 | MR 1386584
[16] Burde, D.: Affine structures on nilmanifolds. International Journal of Mathematics, 7, 5, 1996, 599-616, DOI 10.1142/S0129167X96000323 | MR 1411303
[17] Burde, D.: A refinement of Ado's Theorem. Archiv der Mathematik, 70, 2, 1998, 118-127, DOI 10.1007/s000130050173 | MR 1491457
[18] Burde, D., Dekimpe, K., Deschamps, S.: The Auslander conjecture for NIL-affine crystallographic groups. Mathematische Annalen, 332, 1, 2005, 161-176, DOI 10.1007/s00208-004-0623-1 | MR 2139256
[19] Burde, D.: Left-symmetric algebras, or pre-Lie algebras in geometry and physics. Central European Journal of Mathematics, 4, 3, 2006, 323-357, DOI 10.2478/s11533-006-0014-9 | MR 2233854
[20] Burde, D., Deschamps, K. Dekimpe and S.: LR-algebras. Contemporary Mathematics, 491, 2009, 125-140, DOI 10.1090/conm/491/09612 | MR 2537054
[21] Burde, D., Eick, B., Graaf, W. A. de: Computing faithful representations for nilpotent Lie algebras. Journal of Algebra, 22, 3, 2009, 602-612, DOI 10.1016/j.jalgebra.2009.04.041 | MR 2531213
[22] Burde, D., Dekimpe, K., Vercammen, K.: Complete LR-structures on solvable Lie algebras. Journal of Group Theory, 13, 5, 2010, 703-719, DOI 10.1515/jgt.2010.018 | MR 2720199
[23] Burde, D., Moens, W. A.: Faithful Lie algebra modules and quotients of the universal enveloping algebra. Journal of Algebra, 325, 1, 2011, 440-460, DOI 10.1016/j.jalgebra.2010.09.028 | MR 2745549
[24] Burde, D., Vercammen, K. Dekimpe and K.: Affine actions on Lie groups and post-Lie algebra structures. Linear Algebra and its Applications, 437, 5, 2012, 1250-1263, DOI 10.1016/j.laa.2012.04.007 | MR 2942346
[25] Burde, D., Dekimpe, K.: Post-Lie algebra structures and generalized derivations of semisimple Lie algebras. Moscow Mathematical Journal, 13, 1, 2013, 1-18, DOI 10.17323/1609-4514-2013-13-1-1-18 | MR 3112213
[26] Burde, D., Dekimpe, K.: Post-Lie algebra structures on pairs of Lie algebras. Journal of Algebra, 464, 2016, 226-245, DOI 10.1016/j.jalgebra.2016.05.026 | MR 3533429
[27] Burde, D., Moens, W. A.: Commutative post-Lie algebra structures on Lie algebras. Journal of Algebra, 467, 2016, 183-201, DOI 10.1016/j.jalgebra.2016.07.030 | MR 3545958
[28] Burde, D., Globke, W.: Étale representations for reductive algebraic groups with one-dimensional center. Journal of Algebra, 487, 2017, 200-216, DOI 10.1016/j.jalgebra.2017.06.009 | MR 3671190
[29] Burde, D., Globke, W., Minchenko, A.: Étale representations for reductive algebraic groups with factors $Sp_n$ or $SO_n$. Transformation Groups, 24, 3, 2019, 769-780, DOI 10.1007/s00031-018-9483-8 | MR 3989690
[30] Burde, D., Dekimpe, K., Moens, W. A.: Commutative post-Lie algebra structures and linear equations for nilpotent Lie algebras. Journal of Algebra, 526, 2019, 12-29, DOI 10.1016/j.jalgebra.2019.02.003 | MR 3914193
[31] Burde, D., Ender, C., Moens, W. A.: Post-Lie algebra structures for nilpotent Lie algebras. International Journal of Algebra and Computation, 28, 5, 2018, 915-933, DOI 10.1142/S0218196718500406 | MR 3844707
[32] Burde, D., Gubarev, V.: Rota-Baxter operators and post-Lie algebra structures on semisimple Lie algebras. Communications in Algebra, 47, 5, 2019, 2280-2296, DOI 10.1080/00927872.2018.1536206 | MR 3977738
[33] Burde, D., Zusmanovich, P.: Commutative post-Lie algebra structures on Kac-Moody algebras. Communications in Algebra, 47, 12, 2019, 5218-5226, DOI 10.1080/00927872.2019.1612426 | MR 4019336
[34] Burde, D., Ender, C.: Commutative Post-Lie algebra structures on nilpotent Lie algebras and Poisson algebras. Linear Algebra and its Applications, 584, 2020, 107-126, DOI 10.1016/j.laa.2019.09.010 | MR 4009591
[35] Burde, D., Gubarev, V.: Decompositions of algebras and post-associative algebra structures. International Journal of Algebra and Computation, 30, 3, 2020, 451-466, DOI 10.1142/S0218196720500071 | MR 4082417
[36] Buser, P.: A geometric proof of Bieberbach's theorems on crystallographic groups. Enseign. Math., 31, 1-2, 1985, 137-145, MR 0798909
[37] Dekimpe, K., Igodt, P.: Polycyclic-by-finite groups admit a bounded-degree polynomial structure. Invent. Math., 129, 1, 1997, 121-140, DOI 10.1007/s002220050160 | MR 1464868
[38] Dekimpe, K.: Any virtually polycyclic group admits a NIL-affine crystallographic action. Topology, 42, 4, 2003, 821-832, DOI 10.1016/S0040-9383(02)00030-7 | MR 1958530
[39] Ender, C.: Post-Lie algebra structures on classes of Lie algebras. PhD-thesis, University of Vienna, 2019,
[40] Fried, D., Goldman, W.: Three-dimensional affine crystallographic groups. Adv. Math., 47, 1983, 1-49, DOI 10.1016/0001-8708(83)90053-1 | MR 0689763
[41] Goldman, W. M.: Two papers which changed my life: Milnor's seminal work on flat manifolds and bundles. Frontiers in complex dynamics, Princeton Math. Ser., 51, 2014, 679-703, MR 3289925
[42] Gromov, M., Piatetski-Shapiro, I.: Non-arithmetic groups in Lobachevsky spaces. Inst. Hautes Études Sci. Publ. Math., 66, 1988, 93-103, DOI 10.1007/BF02698928 | MR 0932135
[43] Helmstetter, J.: Radical d'une algèbre symétrique a gauche. Ann. Inst. Fourier, 29, 1979, 17-35, DOI 10.5802/aif.764 | MR 0558586
[44] Hilbert, D.: Mathematical problems. Bulletin of the AMS, 87, 10, 1902, 437-479, DOI 10.1090/S0002-9904-1902-00923-3 | MR 1557926
[45] Jacobson, N.: A note on automorphisms and derivations of Lie algebras. Proc. Am. Math. Soc., 6, 1955, 281-283, DOI 10.1090/S0002-9939-1955-0068532-9 | MR 0068532
[46] Margulis, G.A.: Complete affine locally flat manifolds with a free fundamental group. J. Soviet Math., 36, 1987, 129-139, DOI 10.1007/BF01104978
[47] Milnor, J.: On fundamental groups of complete affinely flat manifolds. Advances in Math., 25, 1977, 178-187, DOI 10.1016/0001-8708(77)90004-4 | MR 0454886
[48] Plesken, W., Schulz, T.: Counting crystallographic groups in low dimensions. Experiment. Math., 9, 3, 2000, 407-411, DOI 10.1080/10586458.2000.10504417 | MR 1795312
[49] Schwarzenberger, R.L.E.: Crystallography in spaces of arbitrary dimension. Proc. Cambridge Philos. Soc., 76, 1974, 23-32, DOI 10.1017/S0305004100048696 | MR 0349867
[50] Segal, D.: The structure of complete left-symmetric algebras. Math. Ann., 293, 1992, 569-578, DOI 10.1007/BF01444735 | MR 1170527
[51] Thurston, W.P.: Three-dimensional geometry and topology. Vol. 1. 35, 1997, Edited by Silvio Levy. Princeton Mathematical Series, Princeton University Press, Princeton, NJ, MR 1435975
[52] Tomanov, G.: Properly discontinuous group actions on affine homogeneous spaces (English summary) Reprinted in Proc. Steklov Inst. Math. Algebra, Geometriya i Teoriya Chisel, 292, 1, 2016, 268-279, MR 3628466
[53] Vallette, B.: Homology of generalized partition posets. J. Pure and Applied Algebra, 208, 2, 2007, 699-725, DOI 10.1016/j.jpaa.2006.03.012 | MR 2277706
[54] (ed.), E. B. Vinberg: Geometry II. 29, 1991, Encyclopedia of Mathematical Sciences, Springer Verlag,
[55] Zassenhaus, H.: Über einen Algorithmus zur Bestimmung der Raumgruppen (German). Comment. Math. Helv., 21, 1948, 117-141, DOI 10.1007/BF02568029 | MR 0024424
Partner of
EuDML logo