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Abstract. In this paper, we are concerned with the existence of traveling waves in a class
of delayed higher dimensional lattice differential systems with competitive interactions. Due
to the lack of quasimonotonicity for reaction terms, we use the cross iterative and Schauder’s
fixed-point theorem to prove the existence of traveling wave solutions. We apply our results
to delayed higher-dimensional lattice reaction-diffusion competitive system.
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1. Introduction

We are concerned with the existence of traveling waves of n dimensional spatially

discrete delayed systems

(1.1)











du1η(t)

dt
= d1(∆ng1(u1))η(t) + f1((u1η)t, (u2η)t),

du2η(t)

dt
= d2(∆ng2(u2))η(t) + f2((u1η)t, (u2η)t),

where t > 0, d1, d2 > 0, (∆ngi(w))η =
∑

|ξ−η|=1, ξ∈Zn

gi(wξ) − 2ngi(wη), η ∈ Z
n,

n ∈ Z
+, |·| is the Euclidean norm in R

n, τ > 0 is the maximal delay involved
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in (1.1), gi : R → R, fi : C([−τ, 0];R) → R, i = 1, 2, (wη)t ∈ C([−τ, 0];R) with

(wη)t(θ) = wη(t+ θ) for θ ∈ [−τ, 0], and the following conditions hold:

(P1) fi(0) = fi(K) = 0, where 0 = (0, 0), K = (k1, k2) are constant functions,

ki > 0, i = 1, 2;

(P2) there exists Li > 0 such that

|fi(Φ1)− fi(Φ2)| 6 Li‖Φ1 − Φ2‖

for Φi = (ϕ1i, ϕ2i) ∈ C([−τ, 0],R2) with 0 6 ϕ1i 6 M1, 0 6 ϕ2i 6 M2 on

[−τ, 0], Mi > ki, ‖·‖ is the supremum norm in C([−τ, 0],R
2), i = 1, 2;

(P3) gi : [0,Mi] → R, i = 1, 2, is Lipschitz continuous and increasing.

We are interested in the traveling waves of (1.1) with nonlinear types (WQM) and

(WQM∗), see Section 2.

Two typical examples are delayed lattice diffusion-competition systems with two

species:

(1.2)











du1η(t)

dt
= d1(∆nu1)η + r1u1η[1− a1u1η − b1u2η(t− τ1)],

du2η(t)

dt
= d2(∆nu2)η + r2u2η[1− b2u1η(t− τ2)− a2u2η],

and

(1.3)











du1η(t)

dt
= d1(∆nu1)η + r1u1η[1− a1u1η(t− τ1)− b1u2η(t− τ2)],

du2η(t)

dt
= d2(∆nu2)η + r2u2η[1− b2u1η(t− τ3)− a2u2η(t− τ4)],

where ri, ai, bi > 0, i = 1, 2, τj > 0, j = 1, 2, 3, 4.

Now we recall some conclusions about the traveling waves of different dimensional

lattice equations with or without delays. In past few years, great progress has been

made in the traveling wave solutions for a single equation, see [1], [2], [3], [4], [5],

[6], [8], [10], [11], [16], [17], [18], [25], [20], [21], [22], [24], [26], [27], [29] for 1 or 2

dimensional lattices and [19], [23], [28] for higher dimensional lattices. Recently,

many authors also paid their attention to the traveling waves for systems with two

equations. For example, for n = 1, Huang, Lu and Ruan [9] investigated the existence

of traveling waves of (1.1) with g1 = g2 and partial monotonicity; Li and Li [13]

studied the existence of traveling wave solutions of competition-cooperation system

as well as asymptotic behavior; Lin and Li [15] investigated the traveling waves of a

class of systems including (1.2) and (1.3), which is not applied to higher dimensional

lattice systems; Guo et al. [7] and Li et al. [12], respectively, studied the existence,

asymptotic behavior and uniqueness of invasive waves for systems (1.2) and (1.3)
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without delays and with delays. The continuous systems (1.2) and (1.3) with n = 1

were also studied by Li et al. [14]. The above existence results of traveling wave

solutions depended on the existence of upper and lower solutions. However, the

existence of traveling wave solutions for higher dimensional lattice systems (1.2)

and (1.3) remains open.

Inspired by the method in [9], [10], [14], [15], we adopt Schauder’s fixed-point

theorem and upper and lower solutions technique to obtain the existence of traveling

waves of (1.1) connecting 0 with K. We required that the weak upper solution

is larger than coexistence equilibrium and is not necessarily monotone, which can

be constructed easier. As applications, we will study the traveling waves of (1.2)

and (1.3).

The rest of this paper is organized as follows. Some notations and preliminaries

are given in Section 2. In Sections 3 and 4, we prove the existence of traveling waves

for the cases (WQM) and (WQM∗), respectively. In Section 5, our conclusions are

applied to (1.2) and (1.3).

2. Existence

We first give some notations in R
2. For x = (x1, x2) and y = (y1, y2), x 6 y is

defined by xi 6 yi, i = 1, 2, and x < y is defined by x 6 y but x 6= y, x≪ y is defined

by x 6 y but xi 6= yi, i = 1, 2. When x 6 y, denote (x, y] = {u ∈ R
2 ; x < u 6 y},

[x, y) = {u ∈ R
2 ; x 6 u < y}, [x, y] = {u ∈ R

2 ; x 6 u 6 y}.

Definition 2.1. The traveling wave solution of (1.1) has the form u1η(t) =

ϕ1(σ · η + ct), u2η(t) = ϕ2(σ · η + ct), where ϕ1(±∞) and ϕ2(±∞) both exist,

σ = (σ1, σ2, . . . , σn) ∈ R
n with |σ| = 1, the wave speed c > 0, the wave profile

(ϕ1, ϕ2) ∈ C1(R,R2).

Substituting uiη(t) = ϕi(σ · η + ct) into (1.1) and denoting ϕit(θ) = ϕi(t + θ),

i = 1, 2, and σ ·η+ct by t, our problem reduces to the existence of solution of system

(2.1)























cϕ′
1(t) =

n
∑

j=1

d1[g1(ϕ1(t+ σk))− 2g1(ϕ1(t)) + g1(ϕ1(t− σk))] + f c
1 (ϕ1t, ϕ2t),

cϕ′
2(t) =

n
∑

j=1

d2[g2(ϕ2(t+ σk))− 2g2(ϕ2(t)) + g2(ϕ2(t− σk))] + f c
2 (ϕ1t, ϕ2t)

with

(2.2) lim
t→−∞

(ϕ1(t), ϕ2(t)) = 0, lim
t→∞

(ϕ1(t), ϕ2(t)) = K,
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where f c
i (ϕ1, ϕ2) = fi(ϕ

c
1, ϕ

c
2), (ϕ

c
1(θ), ϕ

c
2(θ)) = (ϕ1(cθ), ϕ2(cθ)), θ ∈ [−τ, 0], i = 1, 2.

Denote

C[0,M](R,R
2) = {(ϕ1, ϕ2) ∈ C(R,R2) ; 0 6 (ϕ1(t), ϕ2(t)) 6 M, t ∈ R},

whereM = (M1,M2).

The reaction terms f = (f1, f2) satisfy weak quasimonotone condition:

(WQM) there exist βi > 0 such that

f1(ϕ1(θ), ϕ2(θ)) − f1(ψ1(θ), ϕ2(θ)) + β1[ϕ1(0)− ψ1(0)]

> 2nd1[g1(ϕ1(0))− g1(ψ1(0))],

f1(ϕ1(θ), ϕ2(θ)) − f1(ϕ1(θ), ψ2(θ)) 6 0,

f2(ϕ1(θ), ϕ2(θ)) − f2(ϕ1(θ), ψ2(θ)) + β2[ϕ2(0)− ψ2(0)]

> 2nd2[g2(ϕ2(0))− g2(ψ2(0))],

f2(ϕ1(θ), ϕ2(θ)) − f2(ψ1(θ), ϕ2(θ)) 6 0

for ϕi(θ), ψi(θ) ∈ C([−cτ, 0],R), i = 1, 2, with 0 6 (ψ1(θ), ψ2(θ)) 6

(ϕ1(θ), ϕ2(θ)) 6 M for θ ∈ [−cτ, 0],

or weak nonquasimonotone condition:

(WQM∗) there exist βi > 0 such that

f1(ϕ1(θ), ϕ2(θ)) − f1(ψ1(θ), ϕ2(θ)) + β1[ϕ1(0)− ψ1(0)]

> 2nd1[g1(ϕ1(0))− g1(ψ1(0))],

f1(ϕ1(θ), ϕ2(θ)) − f1(ϕ1(θ), ψ2(θ)) 6 0,

f2(ϕ1(θ), ϕ2(θ)) − f2(ϕ1(θ), ψ2(θ)) + β2[ϕ2(0)− ψ2(0)]

> 2nd2[g2(ϕ2(0))− g2(ψ2(0))],

f2(ϕ1(θ), ϕ2(θ)) − f2(ψ1(θ), ϕ2(θ)) 6 0

for ϕi(θ), ψi(θ) ∈ C([−cτ, 0],R), i = 1, 2, with (i) 0 6 (ψ1(θ), ψ2(θ)) 6

(ϕ1(θ), ϕ2(θ)) 6 M for θ ∈ [−cτ, 0], and (ii) eβ1θ/c[ϕ1(θ) − ψ1(θ)] and

eβ2θ/c[ϕ2(θ) − ψ2(θ)] are nondecreasing in θ ∈ [−cτ, 0].

Define H = (H1, H2) : C[0,M](R,R
2) → C(R,R2) by















































H1(ϕ1, ϕ2)(t) = f c
1 (ϕ1t, ϕ2t) + β1ϕ1(t)

+ d1

n
∑

j=1

[g1(ϕ1(t+ σk))− 2g1(ϕ1(t)) + g1(ϕ1(t− σk))],

H2(ϕ1, ϕ2)(t) = f c
2 (ϕ1t, ϕ2t) + β2ϕ2(t)

+ d2

n
∑

j=1

[g2(ϕ2(t+ σk))− 2g2(ϕ2(t)) + g2(ϕ2(t− σk))].
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Then (2.1) becomes

(2.3)

{

cϕ′
1 = −β1ϕ1 +H1(ϕ1, ϕ2),

cϕ′
2 = −β2ϕ2 +H2(ϕ1, ϕ2).

From (2.3), we can define F = (F1, F2) : C[0,M](R,R
2) → C(R,R2) by

Fi(ϕ1, ϕ2)(t) =
1

c
e−βit/c

∫ t

−∞

eβis/cHi(ϕ1, ϕ2)(s) ds, i = 1, 2.

It is clear that F is well defined. Furthermore, if (ϕ1, ϕ2) ∈ C[0,M](R,R
2), then it

solves equations

(2.4) c(Fi(ϕ1, ϕ2))
′(t) = −βiFi(ϕ1, ϕ2)(t) +Hi(ϕ1, ϕ2)(t), i = 1, 2.

Then it is easy to see that a fixed point of (2.4) solves (2.3).

Let (Bν(R,R
2), |·|ν) be a Banach space of continuous vector valued function fromR

to R2, where the norm |·|ν is defined by

|̺|ν = sup
ξ∈R

|̺(ξ)|e−ν|ξ| and Bν(R,R
2) =

{

̺ ∈ C(R,R2) ; sup
ξ∈R

|̺(ξ)|e−ν|ξ| <∞
}

for ν ∈ (0,min{β1/c, β2/c}).

3. The case (WQM)

We first show that f = (f1, f2) satisfies (WQM).

Definition 3.1. The continuous functions Φ = (ϕ1, ϕ2), Φ = (ϕ
1
, ϕ

2
) ∈

C(R,R2) is called an upper (a lower) solution of (2.1) provided that they satisfy

respectively

(3.1)















































cϕ′
1(t) > d1

n
∑

j=1

[g1(ϕ1(t+ σk))− 2g1(ϕ1(t)) + g1(ϕ1(t− σk))]

+ f c
1 (ϕ1t, ϕ2t

) in R,

cϕ′
2(t) > d2

n
∑

j=1

[g2(ϕ2(t+ σk))− 2g2(ϕ2(t)) + g2(ϕ2(t− σk))]

+ f c
2 (ϕ1t

, ϕ2t) in R,
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and

(3.2)















































cϕ′
1
(t) 6 d1

n
∑

j=1

[g1(ϕ1
(t+ σk))− 2g1(ϕ1

(t)) + g1(ϕ1
(t− σk))]

+ f c
1 (ϕ1t

, ϕ2t) in R,

cϕ′
2
(t) 6 d2

n
∑

j=1

[g2(ϕ2
(t+ σk))− 2g2(ϕ2

(t)) + g2(ϕ2
(t− σk))]

+ f c
2 (ϕ1t, ϕ2t

) in R.

We assume that Φ = (ϕ1, ϕ2) and Φ = (ϕ
1
, ϕ

2
) of (2.1) satisfy

(A1) 0 6 Φ(t) 6 Φ(t) 6 M, t ∈ R;

(A2) lim
t→−∞

Φ(t) = 0, lim
t→∞

Φ(t) = lim
t→∞

Φ(t) = K.

By the definition of H , the following conclusion holds.

Lemma 3.1. If (P1)–(P3) and (WQM) are satisfied, then

H1(ψ1, ϕ2)(t) 6 H1(ϕ1, ψ2)(t), H2(ϕ1, ψ2)(t) 6 H2(ψ1, ϕ2)(t),

furthermore,

F1(ψ1, ϕ2)(t) 6 F1(ϕ1, ψ2)(t), F2(ϕ1, ψ2)(t) 6 F2(ψ1, ϕ2)(t)

for t ∈ R if (ϕ1, ϕ2), (ψ1, ψ2) ∈ C[0,M](R,R
2) with

0 6 (ψ1(t), ψ2(t)) 6 (ϕ1(t), ϕ2(t)) 6 M

for t ∈ R, i = 1, 2.

P r o o f. From (P3) and (WQM), for all t ∈ R we have

H1(ϕ1, ψ2)(t)−H1(ψ1, ϕ2)(t) > 2nd1[g1(ϕ1(t)) − g1(ψ1(t))]

+ d1

n
∑

j=1

{[g1(ϕ1(t+ σk))− g1(ψ1(t+ σk))]− 2[g1(ϕ1(t)) − g1(ψ1(t))]

+ [g1(ϕ1(t− σk))− g1(ψ1(t− σk))]} > 0.

The inequality forH2 is obtained by using a similar argument. We also obtain related

properties by the relation between F and H . The proof is completed. �
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Let

Γ(Φ,Φ) = {Φ ∈ C[0,M](R,R
2) ; Φ(t) 6 Φ(t) 6 Φ(t), t ∈ R}.

Obviously, Γ(Φ,Φ) is nonempty since Φ,Φ ∈ Γ(Φ,Φ) by (A1) and (A2).

The following lemma can be proved by using a similar proof of Lemma 3.3 in [15].

Lemma 3.2. If (P1)–(P3) and (WQM) are satisfied, then F is continuous accord-

ing to the norm |·|ν in Bν(R,R
2).

Lemma 3.3. If (P1)–(P3) and (WQM) are satisfied, then F (Γ(Φ,Φ)) ⊂ Γ(Φ,Φ).

P r o o f. When (ϕ1, ϕ2) ∈ Γ(Φ,Φ), it easily follows from Lemma 3.1 that

F1(ϕ1
, ϕ2) 6 F1(ϕ1, ϕ2) 6 F1(ϕ1, ϕ2

), F2(ϕ1, ϕ2
) 6 F2(ϕ1, ϕ2) 6 F2(ϕ1

, ϕ2).

It is enough to show

ϕ
1
6 F1(ϕ1

, ϕ2) 6 F1(ϕ1, ϕ2
) 6 ϕ1, ϕ

2
6 F2(ϕ1, ϕ2

) 6 F2(ϕ1
, ϕ2) 6 ϕ2,

which hold by using a similar argument in Lemma 3.5 of [15]. The proof is completed.

�

Modifying slightly those arguments in Lemma 3.5 of [10] and Lemma 3.7 of [9],

the following conclusion holds.

Lemma 3.4. If (P1)–(P3) and (WQM) are satisfied, then F : Γ(Φ,Φ) → Γ(Φ,Φ)

is compact according to the norm |·|ν .

Theorem 3.1. If (P1)–(P3) and (WQM) are satisfied and (2.1) has a pair of

upper solution Φ and lower solution Φ in C[0,M](R,R
2) satisfying (A1) and (A2),

then (2.1) and (2.2) have a solution.

P r o o f. The existence of solution (ϕ∗
1, ϕ

∗
2) ∈ Γ(Φ,Φ) is easily obtained from

Schauder’s fixed-point theorem. From (A1), 0 6 Φ(t) 6 (ϕ∗
1(t), ϕ

∗
2(t)) 6 Φ(t) 6 M.

The asymptotic boundary conditions are obvious by (A1) and (A2). The proof is

completed. �

R em a r k 3.1. Motivated by the results in [9], [10], [15], the upper and lower

solutions defined by Definition 3.1 do not require the smoothness at all points. We

only assume that (3.1) and (3.2) are satisfied except for the finite point set because

of the continuity of Φ(t) and Φ(t). Then Theorem 3.1 is still valid. We call such

upper and lower solutions weak upper and lower solutions.
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4. The case (WQM∗)

Now we study that f = (f1, f2) satisfies (WQM
∗).

We give another condition on Φ(t) and Φ(t) ∈ C(R,R2) besides (A1) and (A2).

(A3) eβit/c[ϕi(t)− ϕ
i
(t)] is nondecreasing in t ∈ R, i = 1, 2.

Let

Γ∗(Φ,Φ) =



















Φ = (ϕ1, ϕ2) ∈ C[0,M](R,R
2);

(i) Φ(t) 6 Φ(t) 6 Φ(t), t ∈ R,

(ii) eβit/c[ϕi(t)− ϕi(t)],

eβit/c[ϕi(t)− ϕ
i
(t)], i = 1, 2,

are nondecreasing in t ∈ R,



















If Φ and Φ ∈ Γ∗ by (A1)–(A3), then they belong to Γ∗.

The following two lemmas are very similar to Lemmas 3.1 and 3.2.

Lemma 4.1. If (P1)–(P3) and (WQM∗) are satisfied, then

H1(ψ1, ϕ2)(t) 6 H1(ϕ1, ψ2)(t), H2(ϕ1, ψ2)(t) 6 H2(ψ1, ϕ2)(t),

furthermore,

F1(ψ1, ϕ2)(t) 6 F1(ϕ1, ψ2)(t), F2(ϕ1, ψ2)(t) 6 F2(ψ1, ϕ2)(t)

for t ∈ R if (ϕ1, ϕ2), (ψ1, ψ2) ∈ C[0,M](R,R
2) with (i) 0 6 (ψ1(t), ψ2(t)) 6

(ϕ1(t), ϕ2(t)) 6 M for t ∈ R, (ii) eβit/c[ϕi(t) − ψi(t)] is nondecreasing in t ∈ R,

i = 1, 2.

Lemma 4.2. If (P1)–(P3) and (WQM∗) are satisfied, then F is continuous ac-

cording to the norm |·|ν in Bν(R,R
2).

From (A3), we get the properties of Γ∗(Φ,Φ).

Lemma 4.3. Γ∗(Φ,Φ) ⊂ Bν(R,R
2) is closed, bounded and convex.

Modifying slightly arguments of Lemmas 3.3, 3.4, it yields two lemmas as follows.

Lemma 4.4. If (P1)–(P3) and (WQM∗) are satisfied, then F (Γ∗(Φ,Φ)) ⊂

Γ∗(Φ,Φ).

Lemma 4.5. If (P1)–(P3) and (WQM∗) are satisfied, then F : Γ∗(Φ,Φ) →

Γ∗(Φ,Φ) is compact according to the norm |·|ν .
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Theorem 4.1. If (P1)–(P3), (WQM∗) are satisfied and (2.1) has a pair of upper

solution Φ and lower solution Φ in C[0,M](R,R
2) satisfying (A1)–(A3), then (2.1)

and (2.2) has a solution.

R em a r k 4.1. If Φ(t) and Φ(t) are weak upper and lower solutions stated in

Remark 3.1, then Theorem 4.1 still holds.

5. Applications

As mentioned in the introduction, we apply the above results to prove the exis-

tence of traveling waves of (1.2) and (1.3). Equations (1.2) and (1.3) have the same

equilibria

0 = (0, 0),
( 1

a1
, 0
)

,
(

0,
1

a2

)

,

K = (k1, k2) :=
( a2 − b1
a1a2 − b1b2

,
a1 − b2

a1a2 − b1b2

)

, k1 > 0, k2 > 0

provided that

(5.1) a1 > b2, a2 > b1.

E x am p l e 5.1. We study the traveling waves of (1.2) which connects 0 with K.

Consider the existence of the solution for system

(5.2)















































cϕ′
1(t) = d1

n
∑

j=1

[ϕ1(t+ σk)− 2ϕ1(t) + ϕ1(t− σk)]

+ r1ϕ1(t)[1 − a1ϕ1(t)− b1ϕ2(t− cτ1)],

cϕ′
2(t) = d2

n
∑

j=1

[ϕ2(t+ σk)− 2ϕ2(t) + ϕ2(t− σk)]

+ r2ϕ2(t)[1 − b2ϕ1(t− cτ2)− a2ϕ1(t)]

satisfying

lim
t→−∞

(ϕ1(t), ϕ2(t)) = 0, lim
t→∞

(ϕ1(t), ϕ2(t)) = K.

For ϕ1, ϕ2 ∈ C([−cτ, 0],R), τ = max{τ1, τ2}, let

f1(ϕ1, ϕ2) = r1ϕ1(0)[1− a1ϕ1(0)− b1ϕ2(−cτ1)],

f2(ϕ1, ϕ2) = r2ϕ2(0)[1− b2ϕ1(−cτ2)− a2ϕ2(0)].

It is easy to see that f = (f1, f2) satisfies (P1)–(P3). By using an analogous argument

as in [14], [15], the following lemma holds.

Lemma 5.1. The functional f satisfies (WQM).
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Similarly to [9], [10], [15], we can prove the following conclusion.

Lemma 5.2. Let

∆i(λ, c) := di

n
∑

j=1

(eλσk + e−λσk − 2)− cλ+ ri, i = 1, 2.

Then there exist two positive constants c∗1 and c∗2 such that ∆1(λ, c) = 0 and

∆2(λ, c) = 0 have only two real roots 0 < λ1 < λ2 and 0 < λ3 < λ4, respectively,

and

∆1(λ, c)

{

< 0, λ1 < λ < λ2,

> 0, other λ,
and ∆2(λ, c)

{

< 0, λ3 < λ < λ4,

> 0, other λ,

but ∆i(λ, c) = 0 has no real roots for 0 < c < c∗i , i = 1, 2.

Now we construct weak upper and lower solutions when c > c∗ := max{c∗1, c
∗
2}.

Take

υ ∈
(

1,min
{

2,
λ2
λ1
,
λ4
λ3
,
λ1 + λ3
λ1

,
λ1 + λ3
λ3

})

,

consider functions h1(t) = eλ1t − qeυλ1t and h2(t) = eλ3t − qeυλ3t, where q > 1 is

sufficiently large. One can calculate that the unique global maximum ̺i = ̺i(q) > 0

of hi(t) is attained at

t∗i = t∗i (q) = −
1

(υ − 1)λi
ln qυ < 0,

furthermore,

lim
q→∞

̺1(q) = lim
q→∞

̺2(q) = 0, lim
q→∞

eλ1t
∗

1
(q)

= lim
q→∞

qeυλ1t
∗

1
(q) = lim

q→∞
eλ3t

∗

2
(q) = lim

q→∞
qeυλ3t

∗

2
(q) = 0.

The properties of hi(t) imply that it is strictly increasing on (−∞, t∗i ] and strictly

decreasing on [t∗i ,∞). Then

(5.3)























h1(t) = h1(t
∗
1 − 1) has only two real roots t1∗ and t1,

with t1∗ < t∗1 < t1 and t1 − t1∗ > 1,

h2(t) = h2(t
∗
2 − 1) has only two real roots t3∗ and t3

with t3∗ < t∗2 < t3 and t3 − t3∗ > 1.

So for any λ > 0 there exist two positive constants ε2 and ε4 satisfying

h1(t1) = k1 − ε2e
−λt1 and h2(t3) = k2 − ε4e

−λt3 .
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By (5.1), we can choose three positive constants ε0, ε1 and ε3 satisfying

(5.4)

{

a1ε1 − b1ε4 > ε0, a2ε3 − b2ε2 > ε0,

a1ε2 − b1ε3 > ε0, a2ε4 − b2ε1 > ε0.

For λ > 0 and q > 1, define the continuous functions

ϕ1(t) =

{

eλ1t, t 6 t2,

k1 + ε1e
−λt, t > t2,

ϕ2(t) =

{

eλ3t, t 6 t4,

k2 + ε3e
−λt, t > t4,

and

ϕ
1
(t) =

{

eλ1t − qeυλ1t, t 6 t1,

k1 − ε2e
−λt, t > t1,

ϕ
2
(t) =

{

eλ3t − qeυλ3t, t 6 t3,

k2 − ε4e
−λt, t > t3.

Obviously, (M1,M2) := (max
t∈R

ϕ1(t),max
t∈R

ϕ2(t)) ≫ (k1, k2), ϕi(t) and ϕi
(t), i = 1, 2,

satisfy (A1) and (A2) and

min{t2, t4} −max{cτ1, cτ2} > {t1, t3}

for sufficiently small λ and sufficiently large q. From the definitions of υ we have

∆1(υλ1, c) < 0 and ∆2(υλ3, c) < 0.

Lemma 5.3. If (5.1) holds, then (ϕ1(t), ϕ2(t)) and (ϕ
1
(t), ϕ

2
(t)), respectively,

are a pair of weak upper and lower solutions of (5.2).

P r o o f. We can assume σk > 0. We only need to show ϕ1 and ϕ1
since the

others can use a similar argument. Define

P (ϕ1, ϕ2)(t) := cϕ′
1(t)− d1

n
∑

j=1

[ϕ1(t+ σk)− 2ϕ1(t) + ϕ1(t− σk)]

− r1ϕ1(t)[1 − a1ϕ1(t)− b1ϕ2(t− cτ1)].

For ϕ1(t) there are two cases to discuss.

(i) If t < t2, in view of ϕ1(t± σk) 6 eλ1(t±σk), then

P (ϕ1, ϕ2
)(t) > cϕ′

1(t)− d1

n
∑

j=1

[ϕ1(t+ σk)− 2ϕ1(t) + ϕ1(t− σk)]− r1ϕ1(t)

> −eλ1t∆1(λ1, c) = 0.
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(ii) If t > t2, since ϕ1(t± σk) 6 k1 + ε1e
−λ(t±σk) and t2 > t3 + cτ1, we can get

P (ϕ1, ϕ2
)(t) > e−λt

{

ε1

[

− cλ− d1

n
∑

j=1

(eλσk + e−λσk − 2)

]

+ r1(k1 + ε1e
−λt)(a1ε1 − b1ε4e

λcτ1)

}

:= e−λtI1(λ).

I1(λ) > 0 for λ small enough, because I1(0) = r1(k1 + ε1)(a1ε1 − b1ε4) > 0 by (5.4).

Now we verify ϕ
1
(t).

(i) If t < t1 < 0, in view of t1 → −∞ as q → ∞, we have

J(q) :=
a1
q
e(2−υ)λ1t +

b1
q
e((λ1+λ2)/λ1−υ)λ1t → 0 as q → ∞.

Since ϕ
1
(t±σk) > eλ1(t±σk)−qeυλ1(t±σk), ϕ

1
(t) 6 eλ1t and ϕ2(t−cτ1) 6 eλ3(t−cτ1) 6

eλ3t, then

P (ϕ
1
, ϕ2)(t) 6 qeυλ1t∆1(υλ1, c) + r1(a1e

2λ1t + b1e
(λ1+λ3)t)

6 qeυλ1t[∆1(υλ1, c) + r1J(q)] 6 0

for q > 1 large enough.

(ii) If t > t1, we have ϕ2(t − cτ1) 6 k2 + ε3e
−λ(t−cτ1) and ϕ

1
(t ± σk) > k1 −

ε2e
−λ(t±σk) by (5.3), we have

P (ϕ
1
, ϕ2)(t) 6 e−λt

{

ε2

[

d1

n
∑

j=1

(eλσk + e−λσk − 2) + cλ

]

+ r1(k1 − ε2e
−λt)(b1ε3e

λcτ1 − a1ε2)

}

:= e−λtI2(λ).

I2(λ) > 0 for λ small enough, because I2(0) = r1(k1 − ε2)(b1ε3 − a1ε2) < 0 by (5.4).

This completes the proof. �

Theorem 5.1. For any c > c∗, (1.2) has a traveling wave solution (ϕ1(ξ), ϕ2(ξ))

connecting 0 with K if (5.1) holds. Furthermore,

(5.5) lim
ξ→−∞

(ϕ1(ξ)e
−γ1ξ, ϕ2(ξ)e

−γ2ξ) = (1, 1),

lim
ξ→−∞

(ϕ′
1(ξ)e

−γ1ξ, ϕ′
2(ξ)e

−γ2ξ) = (γ1, γ2),

where γ1 = λ1, γ2 = λ3, ξ = σ ·η+ ct. But for 0 < c < c∗ there are no traveling wave

solutions of (1.2) satisfying (5.5) connecting 0 with K.
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P r o o f. By Theorem 3.1 and Remark 3.1, we get the existence conclusion.

The asymptotic behavior lim
ξ→−∞

(ϕ1(ξ)e
−λ1ξ, ϕ2(ξ)e

−λ3ξ) = (1, 1) is obvious by ϕi(t),

ϕ
i
(t), i = 1, 2, and also

lim
ξ→−∞

ϕ′
1(ξ)e

−λ1ξ =
1

c

[

d1

n
∑

j=1

(eλ1σk + e−λ1σk − 2) + r1

]

= λ1.

The second part is similar.

When c∗1 > c∗2, we have c
∗ = c∗1. Assume that there is a traveling wave solution

(ϕ(σ ·η+ct), ψ(σ ·η+ct)) of (1.1) and (5.5) connecting 0 andK for 0 < c < c∗. Then

the asymptotic behavior of (ϕ(ξ), ψ(ξ)) leads to ∆1(γ1, c) = 0, which is impossible.

The case c∗2 > c∗1 is similar. The proof is completed. �

E x am p l e 5.2. We study the traveling waves of (1.3) which connects 0 with K.

Consider the existence of the solution for system

(5.6)















































cϕ′
1(t) = d1

n
∑

j=1

[ϕ1(t+ σk)− 2ϕ1(t) + ϕ1(t− σk)]

+ r1ϕ1(t)[1− a1ϕ1(t− cτ1)− b1ϕ2(t− cτ2)],

cϕ′
2(t) = d2

n
∑

j=1

[ϕ2(t+ σk)− 2ϕ2(t) + ϕ2(t− σk)]

+ r2ϕ2(t)[1− b2ϕ1(t− cτ3)− a2ϕ2(t− cτ4)]

satisfying

lim
t→−∞

(ϕ1(t), ϕ2(t)) = 0, lim
t→∞

(ϕ1(t), ϕ2(t)) = K.

For ϕ1, ϕ2 ∈ C([−cτ, 0],R), τ = max
16i64

τi, let

f1(ϕ1, ϕ2) = r1ϕ1(0)[1− a1ϕ1(−cτ1)− b1ϕ2(−cτ2)],

f2(ϕ1, ϕ2) = r2ϕ2(0)[1− b2ϕ1(−cτ3)− a2ϕ2(−cτ4)].

One can check that f = (f1, f2) satisfies (P1)–(P3).

By using analogous argument as in [14], [15], the following lemma holds.

Lemma 5.4. For τ1, τ4 small enough, the functional f satisfies (PQM
∗).

Let (ϕ1(t), ϕ2(t)) and (ϕ
1
(t), ϕ

2
(t)) be as described above. Obviously, (A3) is

satisfied and

min{t2, t4} −max{cτ1, cτ2, cτ3, cτ4} > {t1, t3}

for sufficiently small λ > 0 and sufficiently large q > 1.

653



Lemma 5.5. If (5.1) holds, then (ϕ1(t), ϕ2(t)) and (ϕ
1
(t), ϕ

2
(t)), respectively,

are a pair of weak upper and lower solutions of (5.6) for sufficiently small τ1, τ4.

P r o o f. We verify ϕ1(t). For t < t2 and t > t2 + cτ1 we can use a similar

argument as in Lemma 5.3. For the case t2 < t < t2 + cτ1, I1(λ) becomes

Ĩ1(λ) = ε1

[

−cλ− d1

n
∑

j=1

(eλσk +e−λσk − 2)

]

+ r1(k1 + ε1e
−λt)(a1ε1e

λcτ1 − b1ε4e
λcτ2),

and from Lemma 5.3, Ĩ1(0) < 0 when t = t2 + cτ1. Then P (ϕ1, ϕ2
)(t) > 0 for

t2 < t < t2 + cτ1 with sufficiently small τ1 because of uniform boundedness and

continuity of ϕ′
1(t), ϕ1(t) and ϕ2

(t) for t ∈ R \ {t2, t3} as well as of independency

of τ1. The cases t4 < t < t4 + cτ4 for ϕ2(t), t1 < t < t1 + cτ1 for ϕ(t), and

t3 < t < t3 + cτ4 for ϕ2
(t) are very similar. This completes the proof. �

From Theorem 4.1 and Remark 4.1, the existence result follows.

Theorem 5.2. For any c > c∗, (1.3) has a traveling wave solution (ϕ1(ξ), ϕ2(ξ))

connecting 0 with K for sufficiently small τ1, τ4 if (5.1) holds. Furthermore,

(5.7) lim
ξ→−∞

(ϕ1(ξ)e
−γ1ξ, ϕ2(ξ)e

−γ2ξ) = (1, 1),

lim
ξ→−∞

(ϕ′
1(ξ)e

−γ1ξ, ϕ′
2(ξ)e

−γ2ξ) = (γ1, γ2),

where γ1 = λ1, γ2 = λ3, ξ = σ ·η+ ct. But for 0 < c < c∗ there are no traveling wave

solutions of (1.2) satisfying (5.5) connecting 0 with K.

R em a r k 5.1. The results of Theorems 5.1 and 5.2 show that the interspecific

delays have no effect on the existence of traveling waves and monotonicity of the

system. But the intraspecific delays τ1, τ4 in (1.3) do.
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