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Abstract. We propose a method of constructing convergent high order schemes for
Hamilton-Jacobi equations on triangular meshes, which is based on combining a high order
scheme with a first order monotone scheme. According to this methodology, we construct
adaptive schemes of weighted essentially non-oscillatory type on triangular meshes for non-
convex Hamilton-Jacobi equations in which the first order monotone approximations are
occasionally applied near singular points of the solution (discontinuities of the derivative)
instead of weighted essentially non-oscillatory approximations. Through detailed numeri-
cal experiments, the convergence and effectiveness of the proposed adaptive schemes are
demonstrated.
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1. Introduction

We study a numerical method for solving Hamilton-Jacobi (HJ) equations

ut +H(∇u) = 0, (x, t) ∈ R
d × (0, T ],(1.1)

u(x, 0) = u0(x), x ∈ R
d.(1.2)

As one knows, it is especially important to resolve singularities such as the devel-

opment of discontinuities in the solution derivative in composing numerical approx-

imations for the Hamilton-Jacobi equation (1.1), (1.2). The first order monotone

scheme by Crandal and Lions [4] is an important class of numerical methods for HJ

equations and these schemes converge to viscosity solutions. But they are at most
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first order accurate and therefore acute parts of solutions are poorly resolved by these

schemes.

In the last two decades, more accurate high order numerical methods for Hamilton-

Jacobi equations have been extensively studied. In [12], the essentially non-

oscillatory (ENO) scheme was proposed for the HJ equation, which is high order

accurate and non-oscillatory near singularities of the solution. Weighted essentially

non-oscillatory (WENO) schemes are representative high order schemes applied to

convection dominated problems as well as HJ equations [15], [8], [16], [10], [5], [13],

[17], [7], [18]. Applying a weighted convex combination in the reconstruction process

to the derivative, WENO schemes achieve high order accuracy in the smooth region

of the solution and give non-oscillatory and sharp approximations near singularities.

On the other hand, despite satisfactory numerical properties, few theoretical re-

sults on convergence are known for high order numerical methods [15]. In general, the

convergence of high order schemes could not be expected for some HJ equations, in-

cluding the problems with nonconvex Hamiltonians and Lipschitz continuous initial

conditions [9]. The high order WENO scheme is based on combining the consis-

tent monotone numerical Hamiltonian with the high order WENO approximation

of derivative. So, it is difficult to ensure the convergence of WENO schemes only

by the reconstruction of derivative based on pure interpolation, without considering

properties of various types of HJ equations [9].

By adequately modifying a high order scheme, one could construct a new scheme

which inherits good numerical properties of the high order scheme and, at the same

time, strictly converges to the solution of the Hamilton-Jacobi equation. In [9],

the authors constructed adaptive finite difference schemes of WENO type for the

Hamilton-Jacobi equation by combining a high order WENO scheme with a first

order monotone one, which achieves high order accuracy and converges to the exact

solution. In [11], [2], the authors proposed filtered schemes based on a combina-

tion of high order and first order monotone schemes through filtered function and

proved its convergence. Similar studies were performed in [14], [3] for hyperbolic

conservation laws.

In this paper, we study problems of constructing convergent high order schemes

on triangular meshes for the Hamilton-Jacobi equation. In Section 2, we propose

a method of constructing the schemes of high order type on triangular meshes for

the Hamilton-Jacobi equation by combining a high order approximation with a first

order monotone one and discuss the convergence of the scheme. Section 3 is con-

cerned with constructing adaptive schemes of WENO type on triangular meshes.

Especially adaptive algorithms blending the high order WENO approximation with

the first order one are proposed for nonconvex HJ equations. A singularity indicator

is introduced on a triangular mesh, which acts as an indicator of identifying singular-
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ities in the solution. Detailed numerical experiments are performed to demonstrate

the effectiveness of the adaptive schemes in Section 4.

2. Construction of adaptive high order schemes on triangular meshes

In this section, we construct adaptive high order schemes on triangular meshes

based on combining a high order approximation with a first order monotone one and

discuss the convergence of the scheme.

2.1. Construction of the scheme. Assume that the following holds for the HJ

equation (1.1), (1.2):

(A1) u0 is a bounded Lipschitz continuous function and therefore there exists a con-

stant L0 satisfying the condition

(2.1) |u0(x) − u0(y)| 6 L0|x− y| ∀x, y ∈ R
d.

(A2) The Hamiltonian H is a bounded Lipschitz continuous function in R
d and

therefore there exists a constant LH satisfying the condition

(2.2) |H(p)−H(q)| 6 LH |p− q| ∀ p, q ∈ R
d.

On the above assumptions, there exists a unique viscosity solution of the equation

(1.1), (1.2) which is bounded and Lipschitz continuous [4]. Here we consider the two-

dimensional case (d = 2). For regular triangulations Th of R
2, hT is the diameter

of the triangle T in Th and h = sup
T∈Th

hT . We define a spatial mesh Gh consisting of

all division nodes named by their indices. Nodes are identified by their indices. We

denote the triangles that have a common vertex i ∈ Gh by Ti,j , j = 1, . . . , Ni. They

are enumerated counterclockwise. The semidiscrete first order monotone and high

order schemes are written as

dui(t)

dt
+ Ĥ(∇MuTi,1 ,∇

MuTi,2 , . . . ,∇
MuTi,Ni

) = 0, i ∈ Gh,(2.3)

dui(t)

dt
+ Ĥ(∇HuTi,1 ,∇

HuTi,2 , . . . ,∇
HuTi,Ni

) = 0, i ∈ Gh.(2.4)

Here Ĥ(·) is a numerical Hamiltonian satisfying the conditions of consistency and

monotonicity, and ∇MuTi,j and ∇
HuTi,j denote the first and high order approxima-

tions of the derivative of u on the triangle Ti,j, j = 1, . . . , Ni, respectively.
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We define a semidiscrete scheme based on adaptive combinations of high and first

order approximations of the derivative as

(2.5)
dui(t)

dt
+ Ĥ({λi(t)∇

HuTi,j (t) + (1− λi(t))∇
MuTi,j (t)}j=1,Ni

) = 0, i ∈ Gh.

Here λi(t) ∈ [0, 1] is a blending coefficient depending on the node and the time level.

The reasonable selection of the blending coefficient λi(t) makes it possible to con-

struct a convergent scheme achieving the high order accuracy. In general, from the

high order accuracy requirement, the blending coefficient should be taken as 1 in the

smooth region of the solution (high order scheme) and in the singular parts of the

solution, the blending coefficient takes the value in [0, 1] according to the convergence

condition. As the solution depends on the time, the position of singular points also

varies on the time and therefore the blending coefficient in (2.5) depends on the time.

The question of selecting the blending coefficient is furthermore concretely discussed

in Section 3.

For the time discretization, we use the strong stability preserving the (SSP) third

order Runge-Kutta method [6] with a time step∆t = T/NT . The full-discrete scheme

is as follows:

For i ∈ Gh, n = 0, 1, . . . , N − 1,

(2.6)





un,1
i = un

i −∆tĤ({∇un
Ti,j

}j=1,Ni
), u0

i = u0(xi),

un,2
i =

3

4
un
i +

1

4
un,1
i −

1

4
∆tH̆({∇un,1

Ti,j
}j=1,Ni

),

un+1
i =

1

3
un
i +

2

3
un,2
i −

2

3
∆tH̆({∇un,2

Ti,j
}j=1,Ni

).

Here ∇un,l
Ti,j

= λn,l
i ∇Huu,l

Ti,j
+(1−λn,l

i ∇Mun,l
Ti,j

), j = 1, . . . , Ni, l = 0, 1, 2 (un,0 = un)

and λn,l
i ∈ [0, 1] is the blending coefficient taken according to the node and the time

level.

2.2. Convergence of the scheme (2.6). In order to verify the convergence of

the scheme (2.6), we first consider the following first order monotone scheme using

the SSP third order Runge-Kutta time discretization: For i ∈ Gh, n = 0, 1, . . . , N−1,

(2.7)





vn,1i = vni −∆tĤ({∇MvnTi,j
}j=1,Ni

), v0i = u0(xi),

vn,2i =
3

4
vni +

1

4
vn,1i −

1

4
∆tH̆({∇Mvn,1Ti,j

}j=1,Ni
),

vn+1
i =

1

3
vni +

2

3
vn,2i −

2

3
∆tH̆({∇Mvn,2Ti,j

}j=1,Ni
).

We denote unit vectors from the point i ∈ Gh towards its neighboring points by ni,j ,

j = 1, 2, . . . , Ni, which are enumerated in the counterclockwise direction. The length
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of the line segment connecting the points i and j is denoted by δi,j and the angle

between the two vectors ni,j and ni,j+1(nn,Ni+1 = ni,1) by θi,j . We also denote the

set of all neighboring points of the point i ∈ Gh by vi ⊂ Gh and the ni,j-directional

derivative of the piecewise first order function v defined on the partition Th by ∂i,jv,

j = 1, . . . , Ni. Then we have

∂i,jv = (vij − vi)/∂ij = ∇MvTi,j+1
· ni,j = ∇MvTi,j · ni,j , j = 1, . . . , Ni,

∇MvTi,j =
1

sin2 θi,j
[(∂i,jv − ∂i,j+1v cos θi,j)ni,j + (∂i,j+1v − ∂i,jv cos θi,j)ni,j+1].

Here ij ∈ vi is a vertex of the triangle Ti,j , Ti,0 = Ti,Ni and ∂i,Ni+1 = ∂i,1.

Therefore, the first order approximation of the derivative ∇MvTi,j (i ∈ Gh, j =

1, . . . , Ni) is defined by a linear combination of the two quantities ∂i,jv and ∂i,j+1v

and the numerical Hamiltonian could be written as

Ĥ({∇Mvn,lTi,j
}j=1,Ni

) = H̃({∂i,jv
n,l}j=1,Ni

), i ∈ Gh.

After all, the scheme (2.7) refers to

(2.8)





vn,1i = vni −∆tH̃({∂i,jv
n}j=1,Ni

), v0i = u0(xi),

vn,2i =
3

4
vni +

1

4
vn,1i −

1

4
∆tH̃({∂ijv

n,1}j=1,Ni
),

vn+1
i =

1

3
vni +

2

3
vn,2i −

2

3
∆tH̃({∂ijv

n,2}j=1,Ni
).

In [9], the authors proved the convergence of a generalized monotone scheme in which

the high order Runge-Kutta time discretization was applied. Apparently, Assump-

tion 1 on the time discretization in [9] is satisfied by the scheme (2.8). At the same

time, from the relation ∆t 6 ch for the time-spacial step (CFL condition), Assump-

tion 2 in [9] is also satisfied with a time step ∆t small enough. From Theorem 3.1

of [9], the following result on convergence is true for the scheme (2.8) (and therefore

the scheme (2.7)).

Theorem 2.1. Assume that the assumptions (A1) and (A2) are satisfied for the

Hamilton-Jacobi equation (1.1), (1.2), and the numerical Hamiltonian Ĥ(H̃) is a Lip-

schitz continuous function satisfying monotonicity and consistency. Then the follow-

ing estimate holds for the viscosity solution u of (1.1), (1.2) and the solution vh of

the scheme (2.7):

For n = 1, . . . , NT , i ∈ Gh,

(2.9) |vni − u(xi,n )| 6 Ch1/2.

Here C is a positive constant depending on u0, T and u.
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R em a r k 2.1. Notice that all sorts of numerical Hamiltonians that one knows

are actually Lipschitz continuous functions.

Theorem 2.2. Let assumptions of Theorem 2.1 be satisfied. We also assume for

the solution of the scheme (2.6) that the following inequalities hold at every time

level t = tn, n = 0, 1, . . . , N − 1:

(2.10)

Ni∑

j=1

|∇un,l
Ti,j

−∇Mun,l
Ti,j

| 6 Cn,h, l = 0, 1, 2,

where Cn,h is independent on the mesh point. Then the following estimate holds for

the solution uh of the adaptive scheme (2.6) and the solution vh of the scheme (2.7):

For n = 1, . . . , NT , t ∈ Gh,

(2.11) |un
i − vni | 6 ∆tL

n−1∑

k=0

Ck,h.

Here L is a Lipschitz constant of the numerical Hamiltonian Ĥ .

P r o o f. We first estimate |u1
i − v1i |, i ∈ Gh. From the Lipschitz continuity and

monotonicity of the numerical Hamiltonian and the assumption (2.10), we obtain

the estimates

u0,1
i = u0

i −∆tĤ({∇u0
Ti,j

})(2.12)

= u0
i −∆tĤ({∇MuT 0

i,j
+ (∇u0

Ti,j
−∇MuT 0

i,j
)}j=1,Ni

)

6 u0
i −∆t[Ĥ({∇Mu0

Ti,j
}j=1,Ni

)− LC0,h]

= v0i −∆tĤ({∇Mv0Ti,j
}j=1,Ni

) + ∆tLC0,h = v0,1i +∆tLC0,h =: w0,1
i ,

u0,2
i =

3

4
u0
i +

1

4
u0,1
i −

1

4
∆tĤ({∇u0,1

Ti,j
}j=1,Ni

)(2.13)

6
3

4
v0i +

1

4
u0,1
i −

1

4
∆t[Ĥ({∇Mu0,1

Ti,j
}j=1,Ni

)− LC0,h]

6
3

4
v0i +

1

4
[w0,1

i −∆tĤ({∇Mw,1
Ti,j

}j=1,Ni
)] +

1

4
∆tLC0,h

=
3

4
v0i +

1

4
v0,1i −

1

4
∆tĤ({∇Mu0,1

Ti,j
}j=1,Ni

) +
1

2
∆tLC0,h

= v0,2i +
1

2
∆tLC0,h =: w0,2

i ,
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u1
i =

1

3
u0
i +

2

3
u0,2
i −

2

3
∆tĤ({∇u0,2

Ti,j
}j=1,Ni

)(2.14)

6
1

3
v0i +

2

3
u0,2
i −

2

3
∆t[Ĥ({∇Mu0,2

Ti,j
}j=1,Ni

)− LC0,h]

6
1

3
v0i +

2

3
[w0,2

i −∆tĤ({∇Mw0,2
Ti,j

}j=1,Ni
)] +

2

3
∆tLC0,h

=
1

3
v0i +

2

3
v0,2i −

2

3
∆tĤ({∇v0,2Ti,j

}j=1,Ni
) + ∆tLC0,h = v1i +∆tLC0,h.

After all, the inequality u1
i 6 v1i + ∆tLC0,h has been proved. The inequality u1

i >

v1i − ∆tLC0,h could be verified similarly. Now let w
n
i = vni + ∆tL

n−1∑
k=0

Ck,h and

apply the induction on n. From the induction assumption and the conditions of the

theorem, the following inequalities are satisfied:

un,1
i 6 un

i −∆t[Ĥ({∇Mun
Ti,j

}j=1,Ni
)− LCn,h](2.15)

6 wn
i −∆tĤ({∇Mwn

Ti,j
}j=1,Ni

) + ∆tLCn,h

= vni −∆tH̆({∇MvnTi,j
}j=1,Ni

) + ∆tL

n∑

k=0

Ck,h

= vn,1i +∆tL

n∑

k=0

Ck,h =: wn,1
i ,

un,2
i 6

3

4
un
i +

1

4
un,1
i −

1

4
∆t[Ĥ({∇Mun,1

Ti,j
}j=1,Ni

)− LCn,h](2.16)

6
3

4
wn

i +
1

4
[wn

i −∆tĤ({∇Mwn,1
Ti,j

}j=1,Ni
)− LCn,h]

=
3

4
vni +

1

4
vn,1i −

1

4
∆tĤ({∇MvnTi,j

}j=1,Ni
) + ∆tL

n−1∑

k=0

Ck,h +
1

2
∆tLCn,h

= vn,2i +∆tL

n−1∑

k=0

Ck,h +
1

2
∆tLCn,h =: wn,2

i ,

un+1
i 6

1

3
un
i +

2

3
un,2
i −

2

3
∆t[Ĥ({∇Mun,2

Ti,j
}j=1,Ni

)− LCn,h](2.17)

6
1

3
wn

i +
2

3
[wn,2

i −∆tĤ({∇Mwn,2
Ti,j

}j=1,Ni
)] +

2

3
∆tLCn,h

=
1

3
vni +

2

3
vn,2i −

2

3
∆tĤ({∇Mvn,2Ti,j

}j=1,Ni
) + ∆tL

n∑

k=0

Ck,h

= vn+1
i +∆tL

n∑

k=0

Ck,h.
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Therefore, the inequality un+1
i 6 vn+1

i + ∆tL
n∑

k=0

Ck,h, i ∈ Gh, was proved. The

inequality un+1
i > vn+1

i −∆tL
n∑

k=0

Ck,h is proved similarly. �

The solution vh of the scheme (2.7) converges to the solution and, therefore, the

solution uh of the adaptive scheme converges to the viscosity solution of the equation

(1.1), (1.2) under the condition that the right-hand side of (2.11) converges to zero

as h tends to zero, which depends on the selection of the combining coefficient.

Theorem 2.3. Assume that the conditions of Theorem 2.2 are satisfied. If the

first order approximation of derivative is applied to singular parts of the solution

of the HJ equation (blending coefficient λi = 0), then the adaptive scheme (2.6)

converges.

P r o o f. From the definition of the approximation of derivative, the following

estimate for the solution of the scheme (2.6) holds in smooth regions of the solution:

(2.18)

Ni∑

j=1

|∇un,l
Ti,j

−∇Mun,l
Ti,j

| 6 O(h).

On the other hand, in case that first order approximations are applied to singular

parts of the solution, the equality

(2.19)

Ni∑

j=1

|∇un,l
Ti,j

−∇Mun,l
Ti,j

| = 0

is satisfied. Therefore, we obtain the following estimate from the inequality (2.11):

For n = 1, . . . , NT , i ∈ Gh,

(2.20) |un
i − vni | 6 ∆tL

NT−1∑

j=1

Ck,h 6 ∆tLNTC1h = C2h.

Applying the above inequality and the estimate (2.9), we obtain the inequality

(2.21) |un
i − u(xi, tn)| 6 |un

i − vni |+ |vni − u(xi, tn)| 6 Ch1/2.

After all, in case that the first order approximations are applied to singular parts of

the solution of the HJ equation, the adaptive scheme (2.6) converges. �
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3. Adaptive WENO schemes on triangular meshes

We construct adaptive schemes of WENO type on triangular meshes in which

first order approximations are partly applied near singular points instead of WENO

approximations.

3.1. Singularity indicator of the solution. The way of combining WENO and

first order approximations at a mesh point depends highly on the smoothness of the

solution near the point. Ahead of composing adaptive algorithms, we introduce the

concept of singularity indicator which characterizes the singularity of the solution

near a given point.

3.1.1. One-dimensional case. We denote the partition of R by Gh = {xi ; i =

0,±1, . . .}, h = sup
i
(xi − xi−1), and identify every node with its index in below.

For the mesh function uh defined on Gh, we define the singularity indicator Si at

the point i as

(3.1) Si =
αi

αi + βi
, i = 0, ±1, . . .

Here

αi = max{γi/γi−1, γi/γi+1}, βi = (u′
max − u′

min)
2/γi, u±

i,mono =
ui±1 − ui

xi±1 − xi
,

γi = (u+
i,mono − u−

i,mono)
2 + ε, u′

max = sup
i=0,±1,...

u±
i,mono, u′

min = inf
i=0,±1,...

u±
i,mono

and ε is a sufficiently small positive constant taken as ε ≈ 10−6 in practice.

In general, the viscosity solution of the Hamilton-Jacobi equation is Lipschitz

continuous and therefore the set of singular points of the solution consists of isolated

points. Accordingly, the singularity indicator Si has the following properties:

⊲ 0 6 Si 6 1,

⊲ Si ∼ O(h2) in smooth regions of the solution,

⊲ Si ≈ 1 near a singularity.

The singularity indicator is estimated by (u′′
M/u′

M )2h2 in smooth regions, where

u′
M = u′

max − u′
min and u′′

M is the upper bound of the second order derivative of the

solution.

3.1.2. Singularity indicator on triangular mesh. Let us define the singularity

indicator for a mesh function {up, p ∈ Gh}. We first enumerate the neighboring

nodes of the point p ∈ Gh and denote them by pi, i = 1, . . . , np. The first order
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approximation of the directional derivative from the point p towards pi is denoted

by u′
ppi

= (upi − up)/|ppi|.

(i) Setting up angular sectors. We first find a neighboring point of the point

p ∈ Gh, denoted by p′1, where |u
′
pp′

1

|, i = 1, . . . , np. If the number of neighboring

points np is an even one, then setting the half line pp
′
1 as a criterion, we divide the

angle (2π) around the point p equally into np sectors. If np is an odd number, the

angle around the point p is divided into np + 1 sectors and hereafter, all discussions

will be the same as in the case that np is an even number with the exception of using

np + 1 in place of np. Now let np be an even number. We select a point on every

angle-dividing half line within triangles with the vertex p and denote these points

by p′i, i = 2, . . . , np, which are in turn enumerated in the counterclockwise direction

with the starting point p′1.

(ii) Approximation of pp′i-directional derivative u
′
pp′

i
(i = 1, . . . , np). If there exists

any neighboring point pj of the node p on the half line pp
′
i, we define the approxi-

mation of the pp′i-directional derivative as u
′
pp′

i
= u′

pp′

j
. Now assume that there does

not exist any neighboring point of the node p on the half the line pp′i. If the triangle

which the half line pp′i intersects has three vertices p, pj, pk, then using these three

interpolation points, we make a linear interpolation function with the interpolation

function values up, upj , upk
. Then we define the approximation of the pp′i-directional

derivative u′
pp′

i
as the pp′i-directional derivative of this interpolation function, which

is equal to the inner product between the gradient of the interpolation function and

pp′i-directional unit vector.

(iii) Definition of the singularity indicator. We define the singularity indicator Sp

of a mesh function up, p ∈ Gh, at the point p ∈ Gh as

(3.2) Sp =
αp

αp + βp
, p ∈ Gh.

Here αp = max
i=1,...,np

{γp/γpi}, βp = u′2
max/γp,

γp = max
i=1,...,np/2

(u′
pp′

i
+ u′

pp′

i+np/2
)2 + ε, u′2

max = sup
p∈Gh

γp.

Considering the property of the viscosity solution of the Hamilton-Jacobi equation,

we find out that the singularity indicator Sp has the same properties as in the one-

dimensional case.

First of all, the singularity indicator Sp is O(h2) in smooth regions of the solution.

This fact is directly derived from the definition of the singularity indicator under the

relationship which holds in smooth regions of the solution:

(3.3) γp = O(h2).
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The above relation (3.3) can be obtained from the estimate on the approximation

of the directional derivative u′
pp′

i
(u′

pp′

i+np/2
). For this, assume that γp = (u′

pp′

i
+

u′
pp′

i+np/2
)2 (ε is neglected during discussion) for some i (1 6 i 6 np/2) and the three

vertices of the triangle where the half line pp′i intersects are p, pj and pk. Now for

h′
i = |xp − xp′

i
|, there exist λ1, λ2 > 0, λ1 + λ2 = 1 such that xp′

i
= λ1xpj + λ2xpk

,

(3.4) u′
pp′

i
=

(λ1upj + λ2upk
)− up

h′
i

=
(λ1upj + λ2upk

)− u(xp′

i
)

h′
i

+
u(xp′

i
)− up

h′
i

.

The second term of the right hand side in (3.4) is estimated as ∇pp′

i
u(xp) + O(h′

i).

On the other hand, considering the equalities

upj = u(xp′

i
) + λ2∇u(xp′

i
) · (xpj − xpk

) +O((xpj − xpk
)2),

upk
= u(xp′

i
) + λ1∇u(xp′

i
) · (xpk

− xpj ) +O((xpk
− xpj )

2),

and the assumption that the triangulation is regular, the first term of the righthand

side in (3.4) is estimated as O(xpj − xpk
). For u′

pp′

i+np/2
, the approximation of

the pp′i+np/2
-directional derivative opposite to the pp′i-direction, we perform similar

discussions. Considering the equality ∇pp′

i
u(xp) + ∇pp′

i+np/2
u(xp) = 0, we finally

conclude that the relationship (3.3) holds in smooth regions of the solution.

The singularity indicator Sp is also close to 1 in singular parts of the solution.

In fact, if a singular point of the Lipschitz continuous viscosity solution falls in the

neighborhood of the point p which is a union of all triangles with the vertex p,

we notice from the definition that γp ≈ O(1), αp ≈ O(h−2) and βp ≈ O(1), and

therefore, αp ≫ βp and Sp ≈ 1.

3.2. Adaptive scheme of WENO type. Using the singularity indicator, we

first define a scheme of WENO + first order monotone type.

Algorithm 3.1: WENO+First Order Monotone.

(i) Approximation of derivative. The approximations of left and right derivatives

at the point i ∈ Gh are as follows:

(3.5) u−
x,i = (1− Si)u

−
i,WENO

+ Siu
−
i,mono, u+

x,i = (1− Si)u
+

i,WENO
+ Siu

+
i,mono.

Here Si, u
±
i,WENO

and u±
i,mono refer to the singularity indicator, high order

WENO and first order approximations on the left and right-biased stencils at

the node i, respectively.
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(ii) The semi-discrete form of the scheme is

(3.6)
dui(t)

dt
+ Ĥ(u−

x,i, u
+
x,i) = 0, i = 0,±1, . . .

Here Ĥ is a numerical Hamiltonian satisfying consistency and monotonicity.

Using the SSP third order Runge-Kutta method, we complete the full-discrete

scheme. The approximation of derivative introduced in (3.5) takes the high order

WENO type in smooth regions of the solution and the first order one in singular

parts of the solution. After all, the convergence of the scheme constructed above

is derived from Theorem 2.3. Such a conclusion will be demonstrated through nu-

merical experiments. We can construct similar schemes on triangular meshes for

two-dimensional problems.

On the other hand, the high order scheme gives more accurate approximation

results than the first order monotone one by its high order accuracy. Using only

the first order approximation in singular parts of the solution as in (3.5) may cause

rather poor numerical approximation results. In order to assure not only conver-

gence but also more accurate numerical results, it is desirable to use as high order

approximation as possible. Therefore, the blending manner of WENO and first or-

der approximations as in (3.5) is apparently not optimal. After all, a more careful

consideration for approximations of the derivative is needed in singular parts of the

solution.

Using the fact that the first order monotone scheme always converges, we may

ascribe the problem of constructing the scheme at singular point xi ∈ R to the

analysis of a local Riemann problem with left and right derivatives u−
i,mono

and

u+
i,mono. Then the local solution of the Riemann problem near the point xi ∈ R

heavily depends on convexity/concavity of the Hamiltonian H in the interval

[u−
i,mono, u

+
i,mono](u

−
i,mono, u

+
i,mono). If the Hamiltonian H is strictly convex, con-

cave or linear in this interval, then the initial state is still preserved as the isolated

singularity (kink) or is rather smoothen as the time evolves. In this case, we

ought to use the high order WENO approximation at the point xi ∈ R. If the

Hamiltonian H is nonconvex in the interval [u−
i,mono, u

+
i,mono](u

−
i,mono, u

+
i,mono), a new

singularity corresponding to the rarefaction wave in the conservation law is de-

veloped in the viscosity solution as the time evolves and the high order scheme

occasionally fails to capture such a singularity. Thus, this leads to the result that

the approximate solution fails to converge. In this case, we must apply the first

order approximation for the convergent scheme. Based on the above discussion, we

propose adaptive WENO schemes in which first order approximations are partly

applied.
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Algorithm 3.2: Adaptive WENO scheme (1-dimensional).

(i) Approximation of derivative. For the upper bound δ of the singularity indicator

in the smooth region of the solution, we define approximations of derivative u±
x,i

as follows:

– If Si 6 δ, then u±
x,i = u±

i,WENO
.

– In case of Si > δ, we first divide R into intervals in which the Hamiltonian H

is strictly convex, concave or linear.

⊲ If both the first order approximations u−
i,Mono

and u+

i,Mono
fall into the same

divided interval, we take u±
x,i = u±

i,WENO
.

⊲ Otherwise: If both u−
i,mono (u+

i,mono) and u−
i,WENO

(u+

i,WENO
) fall into the

same divided interval, u−
x,i = u−

i,WENO
(u+

x,i = u+

i,WENO
). Otherwise, u−

x,i =

u−
i,mono (u+

x,i = u+
i,mono).

(ii) Use the SSP third order Runge-Kutta method for the time discretization.

R em a r k 3.1. The above adaptive approximation of the derivative was derived

from the idea in Section 2. Especially in the case that the singularity indicator is less

than the threshold δ, the high order WENO approximation was applied, considering

that the solution is smooth near the point i ∈ Gh. On the other hand, our numerical

experiments show that numerical solutions depend relatively stably on the selection

of the threshold δ.

Now we construct the adaptive scheme of WENO type on triangular meshes.

Algorithm 3.3: Adaptive WENO scheme on triangular meshes.

(i) Perform WENO approximations of derivative on triangular meshes. The

WENO and first order approximations of derivative in the triangle pippi+1are

denoted by ∇Wup,i and ∇Mup,i (i = 1, . . . , np), respectively.

(ii) Approximation of derivative. For the upper bound δ of the singularity indica-

tor in the smooth region of the solution, we define the approximation of the

derivative ∇up,i (p ∈ Gh, i = 1, . . . , np) as follows:

– If Sp 6 δ, then ∇up,i = ∇Mup,i (i = 1, . . . , np).

– In case that Sp > δ, we first divide R2 into subregions in which Hamiltonian H

is strictly convex, concave or linear.

⊲ If all the first order approximations ∇Mup,i, i = 1, . . . , np, fall into the

same subregion, we take ∇up,i = ∇Wup,i, i = 1, . . . , np.

⊲ Otherwise: If both ∇Mup,i and ∇Wup,i (i = 1, . . . , np) fall into the same

subregion, ∇up,i = ∇Wup,i. Otherwise, ∇up,i = ∇Mup,i.
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(iii) The semi-discrete form of the adaptive WENO scheme is

(3.7)
dup(t)

dt
+ Ĥ(∇up,1, . . . ,∇up,np) = 0.

The numerical Hamiltonian Ĥ(·) is, see [1],

Ĥ(∇up,i, . . . ,∇up,np)

= H
(∑np

i=1 θi∇up,i

2π

)
−

L̂H

π

np∑

i=1

ϕi+1/2

(∇up,i +∇up,i+1

2

)
· ~ni+1,

ϕi+1/2 = tan(θi/2) + tan(θi+1/2), θi = 6 pippi+1,

L̂H = max
{

max
i=1,...,np

|H ′
1(∇up,i)|, max

i=1,...,np

|H ′
2(∇up,i)|

}
.

Here ~ni is the ppi-directional unit vector and H ′
1 (H ′

2) is the partial deriva-

tive (or Lipschitz constant) with respect to the first (second) variable of the

Hamiltonian H . Using the SSP third order Runge-Kutta time discretization,

we complete the full scheme.

4. Numerical examples

In this section, we show the convergence and effectiveness of adaptive schemes of

WENO type through numerical examples.

E x am p l e 4.1. Consider the linear problem

(4.1)

{
ut + ux = 0,

u(x, 0) = u0(x− 0.5),

where u0 is a periodic function (of period 2) defined in Example 5.1 of [9].

As we know from the characteristic method, the solution of the equation (4.1) is

u(x, t) = u0(x − t − 0.5). The results by Algorithm 3.1 combining the fifth order

WENO approximation with the first order monotone one at t = 2 (left) and 8 (right)

are displayed in Fig. 1. In this figure, solid lines denote the solution of the equa-

tion (4.1). As we can see, the numerical solutions by Algorithm 3.2 achieve much

more accurate approximations in singular parts of the solution than the first order

monotone one.

612



−1 −0.6 −0.2 0.2 0.6 1
−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

−1 −0.6 −0.2 0.2 0.6 1
−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

Figure 1. “+”: Algorithm 3.1, “◦”: the first order monotone approximation.

E x am p l e 4.2. Consider the problem with nonconvex Hamiltonian

(4.2)

{
ut + u3

x/3 = 0,

u(x, 0) = − cos(πx)/π, −1 6 x 6 1.

Table 1 shows numerical results by the fifth order WENO schemes and adaptive

WENO schemes (t = 0.2).

WENO scheme Adaptive scheme

N L1-error order L∞-error order L1-error order L∞-error order δ
2.838e− 05 1.104e− 04 0.1

40 2.839e− 05 1.106e− 04 3.004e− 05 1.102e− 04 0.01

3.004e− 05 1.101e− 04 0.001

80
1.787e− 06

3.99

1.106e− 04

3.51

1.787e− 06 3.99 9.688e− 06 3.51 0.1

1.787e− 06 4.07 9.688e− 06 3.51 0.01

1.881e− 06 3.99 9.688e− 06 3.51 0.001

160
9.679e− 08

4.20

8.019e− 07

3.59

9.683e− 08 4.20 8.019e− 07 3.59 0.1

9.683e− 08 4.20 8.019e− 07 3.59 0.01

9.683e− 08 4.20 8.019e− 07 3.59 0.001

320
3.717e− 09

4.70

3.474e− 08

4.53

3.717e− 09 4.70 9.688e− 06 4.53 0.1

3.717e− 09 4.70 3.474e− 08 4.53 0.01

3.717e− 09 4.70 3.474e− 08 4.53 0.001

Table 1. L1 and L
∞-errors for fifth order WENO and adaptive schemes.

As the table shows, L1 and L∞-errors of both the schemes are comparable. Fur-

thermore, numerical solutions by the adaptive scheme are very stable with respect to

the selection of a threshold δ which is the upper bound of the singularity indicator.
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E x am p l e 4.3. Consider the problem with the Hamiltonian and initial function

H(v) =





0, |v| >
1

2
,

− cos(πv), |v| 6
1

2
,

u0(x) =

{
−x, x 6 0,

x, x > 0,
(4.3)

H(v) =

{
0, |v| > 0.2,

− cos(2.5πv), |v| < 0.2,
u0(x) =

{
−x, x 6 0,

x, x > 0.
(4.4)

The pure high order WENO schemes fail to converge for both the problems. Fig. 2

shows the numerical results by Algorithm 3.2. As we can see, the numerical solution

by the adaptive WENO scheme converges to the viscosity solution of the Hamilton-

Jacobi equation.
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1
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2

−1 −0.6 −0.2 0.2 0.6 1
0.4
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0.6

0.7

0.8

0.9

1

Figure 2. The numerical results for the problems (4.3) (left) and (4.4) (right), the solid
line-viscosity solution, “◦”-Algorithm 3.2.

E x am p l e 4.4. Now we consider the 2D HJ equation

(4.5)





ut − cos(ux + uy + 1) = 0, (x, y) ∈ [−2, 2]× [−2, 2],

u(x, y, 0) = − cos
π(x+ y)

2
.

We computed the viscosity solution of the 2-dimensional Hamilton-Jacobi equa-

tion (4.5) with nonconvex Hamiltonian using the Adaptive WENO scheme by Algo-

rithm 3.3.

Table 2 shows L1 and L∞-errors of the third order WENO and adaptive schemes

for the equation (4.5) at time t = 0.5/π
2. L1 and L∞-errors of the adaptive WENO

scheme with a reasonably selected threshold δ almost agree with errors of the WENO

scheme. The numerical solutions by the adaptive scheme are stable with respect to

the selection of threshold δ as in Example 4.2.
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WENO scheme Adaptive scheme

N L1-error order L∞-error order L1-error L∞-error δ
0.0167 2.935e− 03 1

2× 102 0.0167 2.935e− 03 0.0887 0.0418 0.1

0.1226 0.0418 0.01

2× 202
3.613e− 03

2.21

6.871e− 04

2.09

3.613e− 03 6.871e− 04 0.5

4.211e− 03 3.986e− 03 0.1

0.0186 0.0163 0.01

2× 402
4.875e− 04

2.89

1.314e− 04

2.38

4.872e− 04 1.314e− 04 0.05

4.872e− 04 1.314e− 04 0.1

5.643e− 03 3.845e− 03 0.01

2× 802
6.372e− 05 1.936e− 05

6.372e− 05 1.936e− 05 0.01 ∼ 0.1
2.93 2.76

Table 2. L1 and L
∞-errors of the third order WENO and adaptive schemes.

E x am p l e 4.5. Consider the 2D HJ equation

(4.6) ut + sin(ux) + cos(uy) = 0, (x, y) ∈ (−2, 2)× (−2, 2), t > 0,

with the initial condition

(4.7) u(x, y, 0) =





π(14r − 13)

4
, r 6

1

2
,

π(14r − 13)

4
+ 2 sin(10πr),

1

2
6 r < 1, r =

√
x2 + y2,

πr

4
, r > 1,

and the homogeneous Neumann boundary conditions for ux and uy

(4.8)

{
uxx(−2, y, t) = uxx(2, y, t) = 0 ∀ t, ∀ y ∈ [−2, 2],

uyy(x,−2, t) = uyy(x, 2, t) = 0 ∀ t, ∀ y ∈ [−2, 2],

Fig. 3 shows the contour lines of numerical solutions computed by the third order

WENO scheme and the adaptive scheme of the third order WENO type by Algo-

rithm 3.3 on the triangular mesh with 2×2012 elements at time t = 2. For this prob-

lem, we divided the 2-dimensional domain R
2 into the subregions (mπ, (m+ 1)π) ×

(nπ/2, (n + 1)π/2), m,n ∈ Z, across each of which H(v) is strictly convex or con-

cave. As we can see in Fig. 3, the approximate solution by the WENO scheme fails

to converge to the solution of the problem (4.6)–(4.8). On the other hand, as the

contour lines show, the approximate solution by the adaptive scheme converges to

the viscosity solution of the Hamilton-Jacobi equation (4.6)–(4.8).
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Figure 3. Contour lines (t = 2) of approximate solutions by the adaptive (left) and third
order WENO (right) schemes.

5. Conclusion

We have developed the method of constructing convergent schemes of high order

type for the time-dependent Hamilton-Jacobi equation on triangular meshes and

proposed a sort of adaptive algorithms for reasonable combining high WENO and

first order monotone schemes.
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