[7] Duvaut, G., Lions, J.-L.:
Inequalities in Mechanics and Physics. Grundlehren der mathematischen Wissenschaften 219. Springer, Berlin (1976).
MR 0521262 |
Zbl 0331.35002
[8] Emmrich, E.: Discrete versions of Gronwall's lemma and their application to the numerical analysis of parabolic problems. Preprint Series of the Institute of Mathematics Technische Universität Berlin (1999), Preprint 637-1999, 37 pages.
[12] Han, W., Sofonea, M.:
Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. AMS/IP Studies in Advanced Mathematics 30. American Mathematical Society, Providence (2002).
DOI 10.1090/amsip/030 |
MR 1935666 |
Zbl 1013.74001
[13] Kasri, A., Touzaline, A.:
Analysis and numerical approximation of a frictional contact problem with adhesion. Rev. Roum. Math. Pures Appl. 62 (2017), 477-503.
MR 3743417 |
Zbl 1399.74025
[20] Shillor, M., Sofonea, M., Telega, J. J.:
Models and Analysis of Quasistatic Contact: Variational Methods. Lecture Notes in Physics 655. Springer, Berlin (2004).
DOI 10.1007/b99799 |
Zbl 1069.74001
[21] Sofonea, M., Han, W., Shillor, M.:
Analysis and Approximation of Contact Problems with Adhesion or Damage. Pure and Applied Mathematics (Boca Raton) 276. Chapman &Hall/CRC Press, Boca Raton (2006).
DOI 10.1201/9781420034837 |
MR 2183435 |
Zbl 1089.74004
[24] Touzaline, A.:
A quasistatic frictional contact problem with adhesion for nonlinear elastic materials. Electron. J. Differ. Equ. 2008 (2008), Article ID 131, 17 pages.
MR 2443154 |
Zbl 1173.35709