Previous |  Up |  Next

Article

Keywords:
viscoelastic material; long memory; adhesion; quasistatic process; Coulomb's law of dry friction; normal compliance; the time-discretization method; variational inequality
Summary:
We consider a quasistatic contact problem between a viscoelastic material with long-term memory and a foundation. The contact is modelled with a normal compliance condition, a version of Coulomb's law of dry friction and a bonding field which describes the adhesion effect. We derive a variational formulation of the mechanical problem and, under a smallness assumption, we establish an existence theorem of a weak solution including a regularity result. The proof is based on the time-discretization method, the Banach fixed point theorem and arguments of lower semicontinuity, compactness and monotonicity.
References:
[1] Andersson, L.-E.: A quasistatic frictional problem with normal compliance. Nonlinear Anal., Theory Methods Appl. 16 (1991), 347-369. DOI 10.1016/0362-546X(91)90035-Y | MR 1093846 | Zbl 0722.73061
[2] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011). DOI 10.1007/978-0-387-70914-7 | MR 2759829 | Zbl 1220.46002
[3] Chau, O., Goeleven, D., Oujja, R.: Solvability of a nonclamped frictional contact problem with adhesion. Essays in Mathematics and Its Applications Springer, Cham (2016), 71-87. DOI 10.1007/978-3-319-31338-2_4 | MR 3526915 | Zbl 1405.35207
[4] Chau, O., Shillor, M., Sofonea, M.: Dynamic frictionless contact with adhesion. Z. Angew. Math. Phys. 55 (2004), 32-47. DOI 10.1007/s00033-003-1089-9 | MR 2033859 | Zbl 1064.74132
[5] Chen, X.: Modelling and Predicting Textile Behaviour. Elsevier, Amsterdam (2009). DOI 10.1533/9781845697211
[6] Drozdov, A. D.: Finite Elasticity and Viscoelasticity: A Course in the Nonlinear Mechanics of Solids. World Scientific, Singapore (1996). DOI 10.1142/2905 | MR 1445291 | Zbl 0839.73001
[7] Duvaut, G., Lions, J.-L.: Inequalities in Mechanics and Physics. Grundlehren der mathematischen Wissenschaften 219. Springer, Berlin (1976). MR 0521262 | Zbl 0331.35002
[8] Emmrich, E.: Discrete versions of Gronwall's lemma and their application to the numerical analysis of parabolic problems. Preprint Series of the Institute of Mathematics Technische Universität Berlin (1999), Preprint 637-1999, 37 pages.
[9] Frémond, M.: Adhérence des solides. J. Méc. Théor. Appl. 6 (1987), 383-407 French. MR 0912217 | Zbl 0645.73046
[10] Frémond, M.: Non-Smooth Thermomechanics. Springer, Berlin (2002). DOI 10.1007/978-3-662-04800-9 | MR 1885252 | Zbl 0990.80001
[11] Gasiński, L., Papageorgiou, N. S.: Nonlinear Analysis. Series in Mathematical Analysis and Applications 9. Chapman & Hall/CRC, Boca Raton (2006). DOI 10.1201/9781420035049 | MR 2168068 | Zbl 1086.47001
[12] Han, W., Sofonea, M.: Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. AMS/IP Studies in Advanced Mathematics 30. American Mathematical Society, Providence (2002). DOI 10.1090/amsip/030 | MR 1935666 | Zbl 1013.74001
[13] Kasri, A., Touzaline, A.: Analysis and numerical approximation of a frictional contact problem with adhesion. Rev. Roum. Math. Pures Appl. 62 (2017), 477-503. MR 3743417 | Zbl 1399.74025
[14] Kasri, A., Touzaline, A.: A quasistatic frictional contact problem for viscoelastic materials with long memory. Georgian Math. J. 27 (2020), 249-264. DOI 10.1515/gmj-2018-0002 | MR 4104300 | Zbl 1440.49010
[15] Klarbring, A., Mikelić, A., Shillor, M.: Frictional contact problems with normal compliance. Int. J. Eng. Sci. 26 (1988), 811-832. DOI 10.1016/0020-7225(88)90032-8 | MR 0958441 | Zbl 0662.73079
[16] Migórski, S., Ochal, A., Sofonea, M.: Analysis of frictional contact problem for viscoelastic materials with long memory. Discrete Contin. Dyn. Syst., Ser. B 15 (2011), 687-705. DOI 10.3934/dcdsb.2011.15.687 | MR 2774134 | Zbl 1287.74026
[17] Nečas, J., Hlaváček, I.: Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction. Studies in Applied Mechanics 3. Elsevier, Amsterdam (1981). DOI 10.1016/c2009-0-12554-0 | MR 0600655 | Zbl 0448.73009
[18] Panagiotopoulos, P. D.: Inequality Problems in Mechanics and Applications: Convex and Nonconvex Energy Functions. Birkhäuser, Boston (1985). DOI 10.1007/978-1-4612-5152-1 | MR 0896909 | Zbl 0579.73014
[19] Raous, M., Cangémi, L., Cocu, M.: A consistent model coupling adhesion, friction, and unilateral contact. Comput. Methods Appl. Mech. Eng. 177 (1999), 383-399. DOI 10.1016/S0045-7825(98)00389-2 | MR 1710458 | Zbl 0949.74008
[20] Shillor, M., Sofonea, M., Telega, J. J.: Models and Analysis of Quasistatic Contact: Variational Methods. Lecture Notes in Physics 655. Springer, Berlin (2004). DOI 10.1007/b99799 | Zbl 1069.74001
[21] Sofonea, M., Han, W., Shillor, M.: Analysis and Approximation of Contact Problems with Adhesion or Damage. Pure and Applied Mathematics (Boca Raton) 276. Chapman &Hall/CRC Press, Boca Raton (2006). DOI 10.1201/9781420034837 | MR 2183435 | Zbl 1089.74004
[22] Sofonea, M., Matei, A.: Variational Inequalities with Applications: A Study of Antiplane Frictional Contact Problems. Advances in Mechanics and Mathematics 18. Springer, New York (2009). DOI 10.1007/978-0-387-87460-9 | MR 2488869 | Zbl 1195.49002
[23] Sofonea, M., Rodríguez-Arós, A. D., Viaño, J. M.: A class of integro-differential variational inequalities with applications to viscoelastic contact. Math. Comput. Modelling 41 (2005), 1355-1369. DOI 10.1016/j.mcm.2004.01.011 | MR 2151949 | Zbl 1080.47052
[24] Touzaline, A.: A quasistatic frictional contact problem with adhesion for nonlinear elastic materials. Electron. J. Differ. Equ. 2008 (2008), Article ID 131, 17 pages. MR 2443154 | Zbl 1173.35709
Partner of
EuDML logo