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Abstract. We consider a quasistatic contact problem between a viscoelastic material with
long-term memory and a foundation. The contact is modelled with a normal compliance
condition, a version of Coulomb’s law of dry friction and a bonding field which describes the
adhesion effect. We derive a variational formulation of the mechanical problem and, under
a smallness assumption, we establish an existence theorem of a weak solution including a
regularity result. The proof is based on the time-discretization method, the Banach fixed
point theorem and arguments of lower semicontinuity, compactness and monotonicity.
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1. Introduction

In rheology, connecting a spring and a dashpot in parallel leads to the Kelvin-Voigt

model whereas using a combination of a spring and a dashpot in series yields the

Maxwell model, where springs and dashpots represent elastic and viscous properties,

respectively. However, it is well known that the Maxwell model cannot adequately

describe viscoelastic behaviour in creep and the Kelvin-Voigt model cannot predict

the stress relaxation. For this reason, we need to construct more complex rheological

models. For example, by using two springs and a dashpot, one can build up the

Zener model, the so-called standard linear solid model. It is the simplest model that

can describe these two phenomena (see, e.g. [5], [6]). Taking the Maxwell model

together with a spring in parallel leads to the Maxwell representation of the Zener

model, see Figure 1.
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Figure 1. The Maxwell form of the Zener model.

In this model, the dashpot and the two springs obey Newton’s law and Hooke’s

law, respectively, that is

(1.1) (i) σD = ηε̇D, (ii) σ2 = E2ε2, (iii) σ1 = E1ε1,

and, moreover, for series components, we have the relationships

(1.2) σm = σD = σ2, εm = εD + ε2,

whereas, for parallel components, we have

(1.3) σ = σm + σ1, ε = εm = ε1,

where σD is the stress applied to the dashpot, σ1 and σ2 are the stresses applied to

spring 1 and spring 2, respectively, εD is the strain that occurs in the dashpot, an

overdot denotes ordinary differentiation with respect to the time variable t, ε1 and ε2

are the strains that occur in spring 1 and spring 2, respectively, η is the viscosity

of the dashpot component, E1 and E2 represent Young’s modulus of spring 1 and

spring 2, respectively, σm is the stress applied to the Maxwell arm, εm is the strain

that occurs in the Maxwell arm, σ is the total stress and ε is the total strain. It
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follows from (1.1)–(1.3), that

(1.4)
E2

η
σ + σ̇ =

E1E2

η
ε+ (E1 + E2)ε̇,

which gives

(E2

η
σ(s) + σ̇(s)

)
eE2s/η =

E1E2

η
ε(s)eE2s/η + (E1 + E2)ε̇(s)e

E2s/η,

integrating both sides of this equation on (0, t) with the initial conditions σ(0) =

ε(0) = 0 and using integration by parts, we get

(1.5) σ(t) = aε(t) +

∫ t

0

b(t− s)ε(s) ds,

where

a = E1 + E2, b(t− s) = −E
2
2

η
e−E2(t−s)/η.

Also, taking the Kelvin-Voigt model together with a linear elastic spring in series, we

obtain the Kelvin-Voigt representation of the Zener model with equations analogous

to those obtained in (1.4)–(1.5). We now extend the integral law (1.5) to the d-

dimensional case (d = 2, 3) to obtain

(1.6) σ(t) = Aε(u(t)) +
∫ t

0

B(t− s)ε(u(s)) ds,

where σ represents the stress tensor, u denotes the displacement field, ε(u) is the

linearized strain tensor, A is the elasticity operator and B denotes the tensor of
relaxation. Analysis of various boundary value problems with a constitutive equation

of the form (1.6), also known as the viscoelastic law with long memory, can be found

for instance in [14], [16], [22], [23] and references therein.

This paper represents a continuation of [14]. There, the contact problem with

Tresca’s law involving the slip dependent coefficient of friction for materials with

a constitutive law of the form (1.6) was modelled and an existence result, for a friction

coefficient small enough, was established. The novelty of the present paper consists in

dealing with a quasistatic contact problem for viscoelastic materials with a constitu-

tive law of the form (1.6), such that the contact is modelled with a normal compliance

condition and, moreover, both friction and adhesion are taken into account.

The adhesive contact between bodies, when a glue is used to bind two separate sur-

faces together and prevents their relative motion, has received recently considerable

attention in the mathematical literature. General models with adhesion can be found
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in [9], [10]. Related adhesive contact problems can be found in [3], [4], [13], [20], [21],

[24] and references therein. Following [9], [10], we introduce a surface internal variable

β ∈ [0, 1], which is a measure of the intensity of adhesion between the contact surface

and the foundation. When β = 1 all the bonds are active and there is total adhesion;

when 0 < β < 1 partial adhesion takes place; when β = 0 there is no adhesion.

The rest of this paper is organized as follows. In Section 2 we present the notation

and some preliminaries we use in our study. Section 3 and 4 are dedicated to de-

scribe the mechanical problem and derive its variational formulation. In Section 5 we

establish the existence of a weak solution to the problem. Our analysis is based on

the time-discretization method. By using the backward Euler scheme, we construct

a sequence of elliptic quasi-variational inequalities for which at each time step, under

a smallness assumption, we prove the existence of a unique solution. Then, after

obtaining the necessary estimates, we construct approximate solutions and prove

that the limit of a subsequence of the solutions of the approximate problems is

a solution of the continuous problem.

2. Notation and preliminaries

Here we introduce the notation we will use and some preliminary materials. For

further details we refer the reader to [7], [18], [21]. We use the notation N∗ for the set

of positive integers. We denote by S
d the space of second order symmetric tensors

on R
d (d = 2, 3) and we define the inner products and the corresponding norms

on R
d and S

d by

w · v =

d∑

i=1

wivi, |v| =
√
v · v ∀w, v ∈ R

d;

σ · ξ =
∑

16i,j6d

σijξij , |σ| =
√
σ · σ ∀σ, ξ ∈ S

d.

Let Ω ⊂ R
d (d = 2, 3) be a bounded domain with a Lipschitz boundary Γ and let ν

denote the unit outer normal on Γ. Let [0, T ], T > 0 be the time interval of interest,

let t ∈ [0, T ] be the time variable and let x ∈ Ω be the spatial variable. We introduce

the spaces

H = {v = (vi) ; vi ∈ L2(Ω), 1 6 i 6 d},
H1 = {v = (vi) ; vi ∈ H1(Ω), 1 6 i 6 d},
Q = {ξ = (ξij) ; ξij = ξji ∈ L2(Ω), 1 6 i, j 6 d},

Q1 =

{
ξ ∈ Q;

d∑

j=1

∂ξij
∂xj

∈ L2(Ω), 1 6 i 6 d

}
.
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Note that H , Q, H1 and Q1 are real Hilbert spaces endowed with the inner products

given by

(w, v)H =

∫

Ω

w · v dx, (σ, τ)Q =

∫

Ω

σ · τ dx,

(w, v)H1
= (w, v)H + (ε(w), ε(v))Q,

(σ, τ)Q1
= (Div σ,Div τ)H + (σ, τ)Q,

where ε : H1 → Q is the deformation operator, defined by

ε(v) = (εij(v)), εij(v) =
1

2

( ∂vi
∂xj

+
∂vj
∂xi

)
, 1 6 i, j 6 d, ∀ v ∈ H1,

Div : Q1 → H is the divergence operator for tensor functions, defined by

Div σ = (σij,j), σij,j =

d∑

j=1

∂σij
∂xj

, 1 6 i 6 d, ∀σ ∈ Q1.

The associated norms on the spaces H , Q, H1 and Q1 are denoted by ‖·‖H , ‖·‖Q,
‖·‖H1

and ‖·‖Q1
. We note that the real-valued function v 7→ ‖v‖ defined by

‖v‖ =

( d∑

i=1

∫

Ω

(vi)
2 dx+

d∑

i=1

d∑

j=1

∫

Ω

( ∂vi
∂xj

)2
dx

)1/2

∀ v ∈ H1

and ‖·‖H1
are equivalent norms on H1. Let γ̃ : H1 → L2(Γ)d be the trace map. We

recall that γ̃ is a compact operator, i.e., for any bounded sequence {vn} in H1 there

is a subsequence of {vn} which is convergent in L2(Γ)d. For every element v ∈ H1

we denote by γ̃(v) the trace of v on Γ and for all v ∈ H1 we denote by vν and vτ the

normal and tangential components of v on the boundary Γ,

vν = v · ν, vτ = v − vνν on Γ.

In a similar manner, the normal and tangential components of a regular (say C1)

tensor field σ are defined by

σν = σν · ν, στ = σν − σνν on Γ,

moreover, Green’s formula

(2.1) (Div σ, v)H + (σ, ε(v))Q =

∫

Γ

σν · v da ∀ v ∈ H1
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holds, where da is the surface measure element. For every real Banach space

(X, ‖·‖X), we denote by C([0, T ];X) the space of continuous functions from [0, T ]

to X with the norm

‖v‖C([0,T ];X) = max
t∈[0,T ]

‖v(t)‖X .

Also, we use the standard notation for the spaces Lp(0, T ;X) and W k,p(0, T ;X),

p ∈ [1,∞] and k > 1. Finally, we conclude this section with the following Gronwall

type inequality.

Lemma 2.1. Assume that ã and b̃ : [0, T ] → R are two functions in L1(0, T )

satisfying

(2.2) ã(t) 6 b̃(t) + c̃

∫ t

0

ã(s) ds ∀ t ∈ [0, T ],

where c̃ is a nonnegative constant. Then,

(2.3) ã(t) 6 b̃(t) + c̃

∫ t

0

ec̃(t−s)b̃(s) ds ∀ t ∈ [0, T ].

P r o o f. Use arguments similar to those in [8], proof of Proposition 2.1. �

3. Problem statement

The physical setting is as follows. A deformable body occupies a bounded domain

Ω ⊂ R
d (with d = 2, 3). The body is assumed to obey a viscoelastic law with long

memory and the process is quasistatic in the time interval of interest [0, T ]. We

assume that the boundary Γ of the domain Ω is Lipschitz continuous and is divided

into three disjoint measurable parts Γ1, Γ2, Γ3 such that meas(Γ1) > 0. The body

is clamped on Γ1 and therefore the displacement field vanishes there, while volume

forces of density f0 act in Ω and surface tractions of density f2 act on Γ2. The body

is supposed to be in adhesive contact over Γ3 with the foundation and, moreover,

both normal compliance and a version of Coulomb’s law of dry friction are included.

To simplify the notation, we do not indicate explicitly the dependence of various

functions on the spatial variable x ∈ Ω ∪ Γ. Under the above assumptions, the

classical formulation of our problem is the following.
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P r o b l e m 3.1. Find a displacement field u : Ω × [0, T ] → R
d, a stress field

σ : Ω× [0, T ] → S
d and a bonding field β : Γ3 × [0, T ] → R such that

σ(t) = Aε(u(t)) +
∫ t

0

B(t− s)ε(u(s)) ds in Ω× (0, T ),(3.1)

Div σ + f0 = 0 in Ω× (0, T ),(3.2)

u = 0 on Γ1 × (0, T ),(3.3)

σν = f2 on Γ2 × (0, T ),(3.4)

−σν = pν(uν)− qν(β)Rν(uν) on Γ3 × (0, T ),(3.5) 




|στ + qτ (β)Rτ (uτ )| 6 pτ (uν),

|στ + qτ (β)Rτ (uτ )| < pτ (uν) ⇒ u̇τ = 0,

|στ + qτ (β)Rτ (uτ )| = pτ (uν) ⇒ ∃λ > 0

such that στ + qτ (β)Rτ (uτ ) = −λu̇τ on Γ3 × (0, T ),

(3.6)

β̇ = Had(β,Rν(uν)) on Γ3 × (0, T ),(3.7)

β(0) = β0 on Γ3,(3.8)

u(0) = u0 in Ω.(3.9)

We now briefly comment on the problem (3.1)–(3.9). Equation (3.1) represents

the viscoelastic law with long memory. Equation (3.2) is the equilibrium equation

posed on the domain Ω. Conditions (3.3)–(3.4) are the displacement-traction bound-

ary conditions where σν represents the Cauchy stress vector. Relations (3.5)–(3.6)

characterize the contact boundary conditions. Here and below, the dot above a vari-

able represents its derivative with respect to the time variable. Relation (3.5) is the

normal compliance condition in which the contribution of the adhesive to the normal

traction is represented by qν(β)Rν(uν), where uν is the normal displacement and qν
is a nonnegative prescribed function. A possible choice of the function qν is

qν(β) = γνβ
2,

where γν is a given positive material parameter (see, e.g. [4], [21], [24]). The nor-

mal compliance function pν is a nonnegative prescribed function which vanishes for

negative arguments. An example of the normal compliance function pν is

pν(r) = cν(r)+,

where (r)+ denotes the positive part of r, that is (r)+ = max{r, 0}, cν is the surface
stiffness coefficient. We note that an early attempt to study the quasistatic contact

problem with the normal compliance model was done in [1], [15]. The relations (3.6)
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represent a version of Coulomb’s law of dry friction, where pτ is a prescribed non-

negative function, the so-called friction bound. Given pν , we may choose the friction

bound function

pτ (r) = µpν(r),

where µ > 0 is the coefficient of friction (for more details, see, e.g. [20]). The func-

tion qτ is a nonnegative function which acts as the tangential stiffness. In particular,

the following form of the function qτ was considered for instance in [13], [24],

qτ (β) = cτβ
2,

where cτ is a given positive material parameter. Here and below, Rν : R → R and

Rτ : R
d → R

d are truncation functions defined by

Rν(s) =





0 if 0 6 s,

−s if − L 6 s 6 0,

L if s 6 −L,
(3.10)

Rτ (v) =






v if 0 6 |v| 6 L,

L
v

|v| if |v| > L.
(3.11)

The introduction of the operators Rν and Rτ is motivated by the mathematical

arguments where L > 0 is the characteristic length of the bond, beyond which it

stretches without offering any additional resistance (see, e.g. [19], [21]). As in [3],

[4], [13], equation (3.7) describes the evolution of the bonding field where Had is

a general function. An example of the adhesion rate function Had is

(3.12) Had(β, r) = −(ενβr
2 − εa)+ on Γ3 × (0, T ),

where εν , εa are given positive material parameters. We note that in (3.12), the

process is irreversible and once debonding occurs bonding cannot be reestablished

(see, e.g. [20], [21]). Finally, (3.8)–(3.9) are the initial conditions.

4. Assumptions and variational formulation

In order to obtain the variational formulation of the mechanical problem

(3.1)–(3.9), we introduce the space V defined by

V = {v ∈ H1, v = 0 on Γ1}.

486



Since meas(Γ1) > 0, Korn’s inequality

(4.1) CK‖v‖H1
6 ‖ε(v)‖Q ∀ v ∈ V

holds, where CK > 0 is a positive constant depending only on Ω and Γ1. A proof of

Korn’s inequality can be found, for instance, in [17], page 79. Over the space V , we

consider the inner product and its associated norm, given by

(4.2) (w, v)V = (ε(w), ε(v))Q, ‖w‖V = ‖ε(w)‖Q ∀w, v ∈ V.

It follows from Korn’s inequality (4.1) that ‖·‖H1
and ‖·‖V are equivalent norms

on V . Therefore, (V, (·, ·)V ) is a real Hilbert space. Moreover, by the Sobolev trace
theorem, there exists a positive constant c0 depending only on the domain Ω, Γ1

and Γ3 such that

(4.3) ‖v‖L2(Γ3)d 6 c0‖v‖V ∀ v ∈ V.

In the study of the mechanical problem (3.1)–(3.9), we consider the following

assumptions. We assume that A : Ω× S
d → S

d satisfies:

(4.4)






(a) There exists mA > 0 such that

(A(x, ε1)−A(x, ε2)) · (ε1 − ε2) > mA|ε1 − ε2|2

for a.e. x ∈ Ω ∀ ε1, ε2 ∈ S
d.

(b) There exists LA > 0 such that

|A(x, ε1)−A(x, ε2)| 6 LA|ε1 − ε2| for a.e. x ∈ Ω ∀ ε1, ε2 ∈ S
d.

(c) The mapping x 7→ A(x, ε) is Lebesgue measurable on Ω for any ε ∈ S
d.

(d) The mapping x 7→ A(x, 0Sd) belongs to Q.

We assume that the operator B satisfies

(4.5) B ∈W 1,∞(0, T ;Q∞),

where Q∞ is the space of fourth-order tensor fields defined by

Q∞ = {E = (Eijkl) ; Eijkl = Ejikl = Eklij ∈ L∞(Ω) ∀ i, j, k, l ∈ {1, . . . , d}},

which is a real Banach space with the norm

(4.6) ‖E‖Q∞
= max

16i,j,k,l6d
‖Ejikl‖L∞(Ω).
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We assume that the function pα : Γ3 × R → R
+ (α = ν, τ) satisfies:

(4.7)






(i) There exists Lα > 0 such that

|pα(x, r1)− pα(x, r2)| 6 Lα|r1 − r2| ∀ r1, r2 ∈ R for a.e. x ∈ Γ3.

(ii) pα(x, r) = 0 ∀ r 6 0 for a.e. x ∈ Γ3.

(iii) The mapping x 7→ pα(x, r) is Lebesgue measurable on Γ3 ∀ r ∈ R.

We assume that the function qα : Γ3 × R → R
+ (α = ν, τ) satisfies

(4.8)






(i) For all b1, b2 ∈ R, there exists Mαb1b2 > 0 such that

|qα(x, ζ1)− qα(x, ζ2)| 6Mαb1b2 |ζ1 − ζ2|
∀ ζ1, ζ2 ∈ [b1, b2] for a.e. x ∈ Γ3.

(ii) The mapping x 7→ qα(x, ζ) is Lebesgue measurable on Γ3

for any ζ ∈ R.

(iii) The mapping x 7→ qα(x, 0) belongs to L
∞(Γ3).

The adhesion rate function Had : Γ3 × R×[−L,L]→ R is assumed to satisfy:

(4.9)






(i) There exists LHad
> 0 such that

|Had(x, ζ1, r)−Had(x, ζ2, r)| 6 LHad
|ζ1 − ζ2|

for a.e. x ∈ Γ3 ∀ ζ1, ζ2 ∈ R ∀ r ∈ [−L,L].
(ii) For all b1, b2 ∈ R, there exists Lb1b2 > 0 such that

|Had(x, ζ1, r1)−Had(x, ζ2, r2)| 6 Lb1b2(|ζ1 − ζ2|+ |r1 − r2|)
∀ ζ1, ζ2 ∈ [b1, b2] ∀ r1, r2 ∈ [−L,L] for a.e. x ∈ Γ3.

(iii) The mapping x 7→ Had(x, ζ, r) is Lebesgue measurable on Γ3

∀ ζ ∈ R ∀ r ∈ [−L,L].
(iv) Had(x, 0, r) = 0 ∀ r ∈ [−L,L] for a.e. x ∈ Γ3.

(v) Had(x, ζ, r) > 0 ∀ ζ 6 0 ∀ r ∈ [−L,L] for a.e. x ∈ Γ3 and

Had(x, ζ, r) 6 0 ∀ ζ > 1 ∀ r ∈ [−L,L] for a.e. x ∈ Γ3.

The densities of forces satisfy

(4.10) (i) f0 ∈ W 1,∞(0, T ;H), (ii) f2 ∈ W 1,∞(0, T ;L2(Γ2)
d).

Finally, we assume that the initial data satisfy

β0 ∈ L∞(Γ3), 0 6 β0 6 1 for a.e. x ∈ Γ3,(4.11)

u0 ∈ V.(4.12)
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It follows from (4.10) that the function f : [0, T ] → V , defined by

(4.13) (f(t), w)V =

∫

Ω

f0(t) · w dx+

∫

Γ2

f2(t) · w da ∀w ∈ V ∀ t ∈ [0, T ],

has the regularity

(4.14) f ∈W 1,∞(0, T ;V ).

In the sequel, we use the functionals ψ : V ×V → R, jad : L
∞(Γ3)×V ×V → R and

ϕ : L∞(Γ3)× V × V → R defined by

ψ(v, w) =

∫

Γ3

pν(vν)wν da+

∫

Γ3

pτ (vν)|wτ | da,(4.15)

jad(ζ, v, w) = −
∫

Γ3

qν(ζ)Rν(vν)wν da+

∫

Γ3

qτ (ζ)Rτ (vτ ) · wτ da,(4.16)

ϕ(ζ, v, w) = jad(ζ, v, w) + ψ(v, w),(4.17)

respectively, for all v, w ∈ V and for all ζ ∈ L∞(Γ3). Using the Riesz representation

theorem, we can introduce the operator F : V → V defined by

(4.18) (Fv, w)V = (Aε(v), ε(w))Q ∀ v, w ∈ V.

Also, we introduce the operator G : [0, T ] → L(V ) defined by

(4.19) (G(t)w, v)V = (B(t)ε(w), ε(v))Q ∀w, v ∈ V ∀ t ∈ [0, T ],

where L(V ) represents the space of linear and continuous operators from V to V with

the norm ‖·‖L(V ). We turn now to derive a variational formulation of the mechanical

problem (3.1)–(3.9). To do that, let us assume that (u, σ, β) are smooth functions

satisfying (3.1)–(3.9). Let w ∈ V and let t ∈ [0, T ]. We use (3.2) and the Green

formula (2.1), to obtain

(4.20) (σ(t), ε(w))Q −
∫

Ω

f0(t) · w dx =

∫

Γ

σ(t)ν · w da.

Moreover, since w ∈ V , it follows from (3.4)–(3.5) that

(4.21)

∫

Γ

σ(t)ν · w da =

∫

Γ2

σ(t)ν · w da+

∫

Γ3

σν(t)wν da +

∫

Γ3

στ (t) · wτ da

=

∫

Γ2

f2(t) · w da−
∫

Γ3

pν(uν(t))wν da

+

∫

Γ3

qν(β(t))Rν(uν(t))wν da+

∫

Γ3

στ (t) · wτ da.
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Thus, (4.13), (4.20) and (4.21) lead us to

(4.22)





(σ(t), ε(w) − ε(u̇(t)))Q +
∫
Γ3
pν(uν(t))(wν − u̇ν(t)) da

−
∫
Γ3
qν(β(t))Rν (uν(t))(wν − u̇ν(t)) da

−
∫
Γ3
στ (t) · (wτ − u̇τ (t)) da = (f(t), w − u̇(t))V .

On the other hand, using (3.6), we get

∫

Γ3

(στ (t) + qτ (β(t))Rτ (uτ (t))) · u̇τ (t) da = −
∫

Γ3

|στ (t) + qτ (β(t))Rτ (uτ (t))||u̇τ (t)| da

= −
∫

Γ3

pτ (uν(t))|u̇τ (t)| da,

and using the fact that

−
∫

Γ3

(στ (t) + qτ (β(t))Rτ (uτ (t))) · wτ da 6

∫

Γ3

|(στ (t) + qτ (β(t))Rτ (uτ (t)))||wτ | da

6

∫

Γ3

pτ (uν(t))|wτ | da,

we obtain

(4.23) −
∫

Γ3

στ (t) · (wτ − u̇τ (t)) da 6

∫

Γ3

pτ (uν(t))(|wτ | − |u̇τ (t)|) da

+

∫

Γ3

qτ (β(t))Rτ (uτ (t)) · (wτ − u̇τ (t)) da.

Now, from (4.22) and (4.23), we find that

(4.24)






(σ(t), ε(w) − ε(u̇(t)))Q +

∫

Γ3

pν(uν(t))(wν − u̇ν(t)) da

+

∫

Γ3

pτ (uν(t))(|wτ | − |u̇τ (t)|) da

−
∫

Γ3

qν(β(t))Rν (uν(t))(wν − u̇ν(t)) da

+

∫

Γ3

qτ (β(t))Rτ (uτ (t)) · (wτ − u̇τ (t)) da > (f(t), w − u̇(t))V .

Therefore, combine (4.24) with (3.1), (4.15), (4.16), (4.17), (4.18) and (4.19), inte-

grate (3.7) on (0, t), and use the initial conditions (3.8)–(3.9) to obtain the following

variational formulation in terms of displacement and adhesion fields.
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P r o b l e m 4.1. Find a displacement field u : [0, T ] → V and a bonding field

β : [0, T ] → L∞(Γ3) such that





(Fu(t), w − u̇(t))V +

(∫ t

0

G(t− s)u(s) ds, w − u̇(t)

)

V

+ ϕ(β(t), u(t), w) − ϕ(β(t), u(t), u̇(t))

> (f(t), w − u̇(t))V ∀w ∈ V and for a.e. t ∈ (0, T ),

(4.25)

β(t) =

∫ t

0

Had(β(s), Rν(uν(s))) ds+ β0 ∀ t ∈ [0, T ],(4.26)

u(0) = u0.(4.27)

To study the problem (4.25)–(4.27), we need the additional assumption on the

initial data

(4.28) (A(ε(u0)), ε(w))Q + ϕ(β0, u0, w) > (f(0), w)V ∀w ∈ V

and we make the smallness assumption

(4.29) Lτ + Lν <
mA

c20
,

where c0, mA and Lα (α = ν, τ) are given in (4.3), (4.4) and (4.7), respectively.

We end this section by presenting some properties of F , G, ψ, Rν , Rτ and jad. It

follows from (4.4) and (4.18), that the operator F satisfies

mA‖w1 − w2‖2V 6 (Fw1 −Fw2, w1 − w2)V ∀w1, w2 ∈ V,(4.30)

‖Fw1 −Fw2‖V 6 LA‖w1 − w2‖V ∀w1, w2 ∈ V.(4.31)

Thanks to (4.19), (4.5), (4.2) and (4.6), we conclude that there exists LG > 0 such

that

(4.32) ‖(G(t)− G(s))w‖V 6 LG |t− s|‖w‖V ,

which gives

(4.33) ‖G(t)w‖V 6 (TLG + ‖G(0)‖L(V ))‖w‖V

for all w ∈ V and for all t, s ∈ [0, T ]. Using (4.3), (4.7) and (4.15), we deduce that

ψ(g, v)− ψ(g, w) + ψ(z, w)− ψ(z, v) 6 c20(Lτ + Lν)‖g − z‖V ‖v − w‖V ,(4.34)

ψ(g,−z)− ψ(g, g − z) 6 c20(Lτ + Lν)‖g‖2V ,(4.35)

ψ(g, v)− ψ(g, w) 6 ψ(g, v − w),(4.36)

ψ(g, w)− ψ(z, w) 6 c20(Lτ + Lν)‖g − z‖V ‖w‖V ,(4.37)

|ψ(g, v)− ψ(g, w)| 6 c20(Lτ + Lν)‖g‖V ‖v − w‖V ,(4.38)

ψ(g, w) 6 c0(Lτ + Lν)‖g‖V ‖w‖L2(Γ3)d(4.39)
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for all v, g, w, z ∈ V . Also, using (3.11), we find that

(4.40) |Rτ (v)| 6 |v|, |Rτ (v)| 6 L ∀ v ∈ R
d.

Let w, v ∈ R
d. Using the properties of the inner product, we get

|Rτ (v)−Rτ (w)|2 − |v − w|2 =





0 if |w| 6 L and |v| 6 L,
( L
|v| − 1

)
(L|v|+ |v|2 − 2v · w) if |w| 6 L < |v|,

2(L2 − |v||w|)
(
1− v · w

|v||w|
)
− (|v| − |w|)2

if L < |w| and L < |v|.

Therefore, using the inequality

v · w 6 |v||w|,

we obtain

|Rτ (v) −Rτ (w)|2 − |v − w|2 6 0,

which leads to

(4.41) |Rτ (w)−Rτ (v)| 6 |w − v| ∀w, v ∈ R
d.

Using again (3.11), we infer that

(Rτ (v)−Rτ (w)) ·(v−w) =





|v − w|2 if |v| 6 L and |w| 6 L,

L(|v|+ |w|)
(
1− v · w

|v||w|
)
if L < |v| and L < |w|,

(L− |v|)(|w| − |v|) + (|w||v| − v · w) + L
(
|v| − v · w

|w|
)

if |v| 6 L < |w|,

which yields

(4.42) (Rτ (v)−Rτ (w)) · (v − w) > 0 ∀w, v ∈ R
d.

On the other hand, keeping in mind (3.10), it is straightforward to show that

|Rν(s)| 6 |s|, |Rν(s)| 6 L ∀ s ∈ R,(4.43)

|Rν(s1)−Rν(s2)| 6 |s1 − s2| ∀ s1, s2 ∈ R.(4.44)
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Moreover, since Rν is a decreasing function, we get

(4.45) (Rν(s1)−Rν(s2))(s1 − s2) 6 0 ∀ s1, s2 ∈ R.

It follows from (4.40), (4.41), (4.43), (4.44), (4.3), (4.8) and (4.16), that for each

c > 0, there exists Mc > 0 such that the following inequalities hold:

|jad(θ, v, w) − jad(ζ, v, w)| 6Mc‖θ − ζ‖L2(Γ3)‖w‖V ,(4.46)

|jad(ζ, v, w)| 6Mc‖v‖V ‖w‖L2(Γ3)d ,(4.47)

|jad(ζ, v, g)− jad(ζ, w, g)| 6Mc‖v − w‖V ‖g‖V ,(4.48)

|jad(ζ, g, v)− jad(ζ, g, w)| 6Mc‖g‖V ‖v − w‖V(4.49)

for all v, g, w ∈ V and for all θ, ζ ∈ L∞(Γ3) with ‖θ‖L∞(Γ3)
6 c and ‖ζ‖L∞(Γ3)

6 c.

Finally, we use (4.16), (4.45) and (4.42) to obtain

jad(ζ, v, v − w)− jad(ζ, w, v − w) > 0,(4.50)

jad(ζ, w, w) > 0(4.51)

for all v, w ∈ V and for all ζ ∈ L∞(Γ3).

5. Existence of a weak solution

The following theorem is the main result of this paper.

Theorem 5.1. Assume that (4.4)–(4.12) and (4.28)–(4.29) are fulfilled. Then,

the problem (4.25)–(4.27) has at least one solution {u, β} which satisfies

u ∈ W 1,∞(0, T ;V ),(5.1)

β ∈ W 1,∞(0, T ;L∞(Γ3)), 0 6 β(t) 6 1 for a.e. x ∈ Γ3 ∀ t ∈ [0, T ].(5.2)

We divide the proof of Theorem 5.1 into several steps.

F i r s t step. For each m ∈ N
∗, we introduce a uniform partition of the time inter-

val [0, T ], denoted by tmi = ihm, hm = T/m, i = 0, . . . ,m. For a sequence {wi
m}mi=0,

we put δwi+1
m = (wi+1

m − wi
m)/hm and for a continuous function z ∈ C([0, T ];X)

with values in a normed space X , we use the notation zmi = z(tmi ), i = 0, . . . ,m. We

consider the following incremental problems P i+1
m , i ∈ {0, . . . ,m− 1}.
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P r o b l e m 5.2 (P i+1
m ). Find a function ui+1

m ∈ V such that

(5.3)






(Fui+1
m , w − δui+1

m )V + (hm

i∑

j=0

Gm
i+1,j , w − δui+1

m )V

+ ϕ(βi+1
m , ui+1

m , w)− ϕ(βi+1
m , ui+1

m , δui+1
m )

> (fm
i+1, w − δui+1

m )V ∀w ∈ V,

where ujm is the unique solution of problem Pj
m, j = 1, . . . , i,

Gm
i+1,j = G(tmi+1 − tmj )ujm, i = 0, . . . ,m− 1, j = 0, . . . , i,(5.4)

βi+1
m = hm

i∑

j=0

Had(β
j
m, Rν(u

j
mν)) + β0

m, i = 0, . . . ,m− 1,(5.5)

fm
i+1 = f(tmi+1), i = 0, . . . ,m− 1,(5.6)

(i) u0m = u0, (ii) β0
m = β0.(5.7)

Thanks to (4.9) (i), (4.9) (iv) and (5.5), we deduce that

|βi+1
m − βi

m| 6 LHad
hm|βi

m| for a.e. x ∈ Γ3, 0 6 i 6 m− 1,

which implies that if βi
m ∈ L∞(Γ3), then β

i+1
m ∈ L∞(Γ3), 0 6 i 6 m − 1. Now, by

setting w = (v − uim)/hm in (5.3), it follows that P i+1
m is formally equivalent to the

following problem.

P r o b l e m 5.3 (Qi+1
m ). Find a function ui+1

m ∈ V , such that

(5.8)





(Fui+1
m , v − ui+1

m )V +

(
hm

i∑

j=0

Gm
i+1,j , v − ui+1

m

)

V

+ ϕ(βi+1
m , ui+1

m , v − uim)− ϕ(βi+1
m , ui+1

m , ui+1
m − uim)

> (fm
i+1, v − ui+1

m )V ∀ v ∈ V,

where {Gm
i+1,j}, {βi+1

m }, {fm
i+1}, u0m and β0

m are given by (5.4)–(5.7) and u
j
m is the

unique solution of problem Pj
m, j = 1, . . . , i.

Lemma 5.4. Problem P i+1
m , 0 6 i 6 m− 1, has a unique solution.

P r o o f. Let A : V → V be the operator defined by

(5.9) (Av,w)V = (Fv, w)V +

(
hm

i∑

j=0

Gm
i+1,j , w

)

V

+ jad(β
i+1
m , v, w)
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for all v, w ∈ V . From (4.30), (4.31), (5.9), (4.48) and (4.50), we deduce that A

is a strongly monotone Lipschitz continuous operator. Let g ∈ V , using (4.15)

and (4.38), we find that the functional Θg : V → R, defined by

Θg(v) = ψ(g, v − uim) ∀ v ∈ V,

is a proper convex continuous function. Thus, using a standard result on elliptic

variational inequalities of the second kind (see [12], p. 60), we find that the problem:

Find ui+1
mg ∈ V , such that

(5.10)

{
(Aui+1

mg , v − ui+1
mg )V + ψ(g, v − uim)− ψ(g, ui+1

mg − uim)

> (fm
i+1, v − ui+1

mg )V ∀ v ∈ V,

has a unique solution ui+1
mg ∈ V . To continue, we define the operator Ψ: V → V by

(5.11) Ψ(g) = ui+1
mg ∀ g ∈ V.

Let g1, g2 ∈ V . Using the notation u1 = ui+1
mg1 and u2 = ui+1

mg2 , we get by (5.10)

(Au1 −Au2, u1 − u2)V 6 ψ(g1, u2 − uim)− ψ(g1, u1 − uim)

+ ψ(g2, u1 − uim)− ψ(g2, u2 − uim),

which together with (4.34), (4.50), (4.30) and (5.9) implies that

mA‖u1 − u2‖2V 6 c20(Lτ + Lν)‖g1 − g2‖V ‖u1 − u2‖V ,

and using (5.11), we have

‖Ψg2 −Ψg1‖V 6
c20(Lτ + Lν)

mA

‖g1 − g2‖V .

This last inequality implies that, under the smallness assumption (Lτ+Lν) < mA/c
2
0,

Ψ is a contraction in the Hilbert space V . Therefore, there exists a unique element

g∗ ∈ V, such that ui+1
mg∗ = Ψg∗ = g∗. We have now all the ingredients to prove

Lemma 5.4. Let g∗ be the unique fixed point of Ψ defined by (5.11) and let ui+1
m =

g∗ = ui+1
mg∗ be the unique solution of the problem (5.10) for g = g∗. Keeping in

mind (5.9) and (4.17), we deduce that ui+1
m is a solution to problem Qi+1

m which is

formally equivalent to problem P i+1
m . The uniqueness of the solution is a consequence

of the uniqueness of the fixed point of the operator Ψ and of the uniqueness of the

solution of the problem (5.10). �

In the rest of this paper, the same letter c will be used to denote different positive

constants which depend neither on m ∈ N
∗ nor on t ∈ (0, T ).
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S e c o n d step. In this step we have the following result.

Lemma 5.5. There exists c > 0 such that for all m ∈ N
∗,

‖ui+1
m ‖V + ‖βi+1

m ‖L∞(Γ3) 6 c, 0 6 i 6 m− 1,(5.12)

‖δui+1
m ‖V 6 c, 0 6 i 6 m− 1.(5.13)

P r o o f. It follows from (5.7) that there exists c > 0 such that

(5.14) ‖u0m‖V + ‖β0
m‖L∞(Γ3) 6 c ∀m ∈ N

∗.

Using (4.9) (i), (4.9) (iv) and (5.5), we obtain

‖βi+1
m ‖L∞(Γ3) 6 chm

i∑

j=0

‖βj
m‖L∞(Γ3) + ‖β0

m‖L∞(Γ3), 0 6 i 6 m− 1.

Applying a discrete version of the Gronwall lemma (see, e.g. [12]) in the last inequality

leads us to

(5.15) ‖βi+1
m ‖L∞(Γ3) 6 c, 0 6 i 6 m− 1.

Taking v = 0V in (5.8) and keeping in mind (4.17), we get

(Fui+1
m , ui+1

m )V + jad(β
i+1
m , ui+1

m , ui+1
m ) 6 ψ(ui+1

m ,−uim)− ψ(ui+1
m , ui+1

m − uim)Q

−
(
hm

i∑

j=0

Gm
i+1,j , u

i+1
m

)

V

+ (fm
i+1, u

i+1
m )V

and using (4.30), (4.51), (4.33), (5.4), (4.35 ), we arrive at

mA‖ui+1
m ‖2V 6 c20(Lτ + Lν)‖ui+1

m ‖2V +

(
chm

i∑

j=0

‖ujm‖V
)
‖ui+1

m ‖V

+ ‖fm
i+1‖V ‖ui+1

m ‖V + ‖F(0V )‖V ‖ui+1
m ‖V .

By virtue of the assumptions (4.29) and (4.14), the last inequality becomes

(5.16) ‖ui+1
m ‖V 6 chm

i∑

j=0

‖ujm‖V + c.
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Employing again a discrete version of the Gronwall lemma in (5.16) yields

‖ui+1
m ‖V 6 c, 0 6 i 6 m− 1,

which with (5.15) gives (5.12). To continue, using (4.9) (i), (4.9) (iv) and (5.5), one

has

‖βi+1
m − βi

m‖L∞(Γ3) 6 chm‖βi
m‖L∞(Γ3), 0 6 i 6 m− 1,

and thanks to (5.14) and (5.15), we get

(5.17) ‖δβi+1
m ‖L∞(Γ3) 6 c, 0 6 i 6 m− 1.

Setting v = u0m in (5.8) for i = 0 and w = u1m − u0m in (4.28), and summing up the

two inequalities, we obtain





(Fu1m −Fu0m, u1m − u0m)V

+jad(β
0
m, u

1
m, u

1
m − u0m)− jad(β

0
m, u

0
m, u

1
m − u0m)

6 jad(β
0
m, u

1
m, u

1
m − u0m)− jad(β

1
m, u

1
m, u

1
m − u0m)

−(hmGm
1,0, u

1
m − u0m)V + ψ(u0m, u

1
m − u0m)

−ψ(u1m, u1m − u0m) + (fm
1 − fm

0 , u
1
m − u0m)V .

We then use (4.30), (5.14), (5.15), (4.46), (4.50), (4.33), (5.4) and (4.37) to see that




mA‖u1m − u0m‖2V 6 c‖β1
m − β0

m‖L2(Γ3)‖u1m − u0m‖V
+chm‖u0m‖V ‖u1m − u0m‖V + c20(Lτ + Lν)‖u1m − u0m‖2V
+‖fm

1 − fm
0 ‖V ‖u1m − u0m‖V ,

and thanks to (4.14), (4.29) and (5.17), we get

∥∥∥
u1m − u0m
hm

∥∥∥
V
6 c+ c

∥∥∥
β1
m − β0

m

hm

∥∥∥
L2(Γ3)

+ c
∥∥∥
fm
1 − fm

0

hm

∥∥∥
V
6 c+ c‖ḟ‖L∞(0,T ;V ).

Thus, we have

(5.18) ‖δu1m‖V 6 c.

Taking w = 0V in problem P i+1
m and w = (ui+1

m − ui−1
m )/hm in problem P i

m, and

summing up the two inequalities, we obtain





(Fui+1
m −Fuim, δui+1

m )V + jad(β
i+1
m , ui+1

m , δui+1
m )− jad(β

i+1
m , uim, δu

i+1
m )

6 hm

(i−1∑

j=0

(Gm
i,j − Gm

i+1,j), δu
i+1
m

)

V

− hm(Gm
i+1,i, δu

i+1
m )V

+
(
ψ
(
uim,

ui+1
m − ui−1

m

hm

)
− ψ

(
uim,

uim − ui−1
m

hm

))
− ψ

(
ui+1
m ,

ui+1
m − uim
hm

)

+jad(β
i
m, u

i
m, δu

i+1
m )− jad(β

i+1
m , uim, δu

i+1
m ) + (fm

i+1 − fm
i , δu

i+1
m )V .
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So, from (4.30), (4.50), (4.32), (4.33), (5.4), (5.15), (4.46), (4.37), (4.36), it follows

that






mA‖ui+1
m − uim‖2V 6 ch2m

(i−1∑

j=0

‖ujm‖V
)
‖ui+1

m − uim‖V

+chm‖uim‖V ‖ui+1
m − uim‖V

+c‖βi+1
m − βi

m‖L2(Γ3)‖ui+1
m − uim‖V + c20(Lτ + Lν)‖ui+1

m − uim‖2V
+‖fm

i+1 − fm
i ‖V ‖ui+1

m − uim‖V ,

which gives

(5.19) ‖δui+1
m ‖V 6 chm

(i−1∑

j=0

‖ujm‖V
)
+ c‖uim‖V + c‖δβi+1

m ‖L2(Γ3) + c‖ḟ‖L∞(0,T ;V ).

Now, (5.13) is a consequence of (5.19), (5.12), (5.17) and (5.18). �

T h i r d step. In this step we construct an approximate solution to the problem

(4.25)–(4.27). To this end, for each m ∈ N
∗, let ujm be the unique solution of prob-

lem Pj
m, j = 1, . . . ,m. We introduce the functions um : [0, T ] → V , ũm : [0, T ] → V ,

β̃m : [0, T ] → L2(Γ3), Gm : [0, T ] → V and fm : [0, T ] → V defined by

um(0) = u0, um(t) = uim + (t− tmi )δui+1
m ∀ t ∈ (tmi , t

m
i+1], 0 6 i 6 m− 1,(5.20)

ũm(0) = u0, ũm(t) = ui+1
m ∀ t ∈ (tmi , t

m
i+1], 0 6 i 6 m− 1,(5.21)

β̃m(0) = β0, β̃m(t) = βi+1
m ∀ t ∈ (tmi , t

m
i+1], 0 6 i 6 m− 1,(5.22)

Gm(0) = 0V , Gm(t) = hm

i∑

j=0

Gm
i+1,j ∀ t ∈ (tmi , t

m
i+1], 0 6 i 6 m− 1,(5.23)

fm(0) = f(0), fm(t) = fm
i+1 ∀ t ∈ (tmi , t

m
i+1], 0 6 i 6 m− 1,(5.24)

respectively. Here {Gm
i+1,j}, {βi+1

m }, {fm
i+1} and u0m are given by (5.4)–(5.7). From

(5.20), the function um has a derivative function which is given by

(5.25) u̇m(t) = δui+1
m ∀ t ∈ (tmi , t

m
i+1), 0 6 i 6 m− 1.

We have the following estimate results.
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Lemma 5.6. There exists c > 0, such that for all m ∈ N
∗,

‖ũm(t)‖V 6 c ∀ t ∈ [0, T ],(5.26)

‖β̃m(t)‖L∞(Γ3) 6 c ∀ t ∈ [0, T ],(5.27)

‖um(t)‖V 6 c ∀ t ∈ [0, T ],(5.28)

‖u̇m(t)‖V 6 c for a.e. t ∈ [0, T ],(5.29)

‖ũm(t)− um(t)‖V 6 chm ∀ t ∈ [0, T ],(5.30)

‖fm(t)− f(t)‖V 6 chm ∀ t ∈ [0, T ],(5.31)

‖um(t)− um(s)‖V 6 c|t− s| ∀ t, s ∈ [0, T ],(5.32)

‖um(t)− um(s)‖L2(Γ3)d 6 c|t− s| ∀ t, s ∈ [0, T ].(5.33)

P r o o f. It is clear that (5.26)–(5.29) are the consequences of (5.20)–(5.22),

(5.25) and Lemma 5.5. On the other hand, using (5.20)–(5.21) we get

‖ũm(t)− um(t)‖V 6 ‖ui+1
m − uim‖V + |t− tmi |‖δui+1

m ‖V
6 chm‖δui+1

m ‖V ∀ t ∈ (tmi , t
m
i+1], 0 6 i 6 m− 1,

which with (5.13) gives (5.30). To establish (5.31), observe that fm(0) = f(0),

moreover, by the regularity (4.14), we have

‖fm(t)− f(t)‖V 6

∫ tmi+1

t

‖ḟ(s)‖V ds 6 chm ∀ t ∈ (tmi , t
m
i+1], 0 6 i 6 m− 1.

To continue, using (5.29), we obtain

‖um(t)− um(s)‖V 6

∣∣∣∣
∫ t

s

‖u̇m(r)‖V dr

∣∣∣∣ 6 c|t− s|

for all t, s ∈ [0, T ]. Finally, (5.33) is a direct consequence of (5.32) and (4.3). �

In the next we need the following result.

Lemma 5.7. There exists c > 0, such that for all m, n ∈ N
∗ with m > n,

(5.34) ‖Gm(t)− Gn(t)‖V 6 c

∫ t

0

‖ũm(s)− ũn(s)‖V ds+ chn ∀ t ∈ [0, T ].

P r o o f. Let m, n ∈ N
∗ with m > n. It is obvious that (5.34) holds for t = 0.

Now, let t ∈ (0, T ], then, there are three cases, (i) t ∈ (tm0 , t
m
1 ] ∩ (tn0 , t

n
1 ], (ii) t ∈
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(tmq , t
m
q+1] ∩ (tn0 , t

n
1 ] with q ∈ {1, . . . ,m − 1}, (iii) t ∈ (tmq , t

m
q+1] ∩ (tnp , t

n
p+1] with

q ∈ {1, . . . ,m − 1} and p ∈ {1, . . . , n − 1}. Using (4.33), (5.4), (5.7) (i) and (5.23),
we get

(5.35) ‖Gm(t) − Gn(t)‖V = ‖hmG(tm1 )u0m − hnG(tn1 )u0n‖V
6 chm + chn ∀ t ∈ (tm0 , t

m
1 ] ∩ (tn0 , t

n
1 ].

On the other hand, let t ∈ (tmq , t
m
q+1] with q ∈ {1, . . . ,m − 1}. We use (5.4), (5.23)

and (5.21) to obtain

Gm(t) =

q∑

j=1

∫ tmj

tm
j−1

G(tmq+1 − tmj )ũm(s) ds+ hmG(tmq+1)u
0
m,

which gives

(5.36) Gm(t) =

q∑

j=1

∫ tmj

tm
j−1

(G(tmq+1 − tmj )− G(tmq+1 − s))ũm(s) ds

+

q∑

j=1

∫ tmj

tm
j−1

(G(tmq+1 − s)− G(t− s))ũm(s) ds

+

∫ t

0

G(t− s)ũm(s) ds+

∫ tmq

t

G(t− s)ũm(s) ds+ hmG(tmq+1)u
0
m.

Thus, for all t ∈ (tmq , t
m
q+1] ∩ (tn0 , t

n
1 ] with q ∈ {1, . . . ,m− 1}, we have

(5.37) ‖Gm(t)− Gn(t)‖V 6 c

q∑

j=1

∫ tmj

tm
j−1

|s− tmj |‖ũm(s)‖V ds

+ c

q∑

j=1

∫ tmj

tm
j−1

|tmq+1 − t|‖ũm(s)‖V ds

+ c

∫ tmq

0

‖G(t− s)ũm(s)‖V ds

+ ‖hmG(tmq+1)u
0
m‖V + ‖hnG(tn1 )u0n‖V

6 c

q∑

j=1

h2m + c

q∑

j=1

h2m

+ c

∫ tmq

0

‖ũm(s)‖V ds+ chm + chn

6 c

∫ tn1

0

ds+ chm + chn

6 chm + chn.
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Now, it follows from (4.32), (4.33) and (5.36), that

‖Gm(t)− Gn(t)‖V 6 c

q∑

j=1

∫ tmj

tm
j−1

|s− tmj |‖ũm(s)‖V ds

+ c

p∑

j=1

∫ tnj

tn
j−1

|s− tnj |‖ũn(s)‖V ds+ c

q∑

j=1

∫ tmj

tm
j−1

|tmq+1 − t|‖ũm(s)‖V ds

+ c

p∑

j=1

∫ tnj

tn
j−1

|tnp+1 − t|‖ũn(s)‖V ds+ c

∫ t

0

‖ũm(s)− ũn(s)‖V ds+ chm + chn

for all t ∈ (tmq , t
m
q+1] ∩ (tnp , t

n
p+1] with q ∈ {1, . . . ,m− 1} and p ∈ {1, . . . , n− 1}, and

keeping in mind (5.26), we obtain

‖Gm(t)− Gn(t)‖V 6 c

q∑

j=1

h2m + c

p∑

j=1

h2n + c

q∑

j=1

h2m + c

p∑

j=1

h2n

+ c

∫ t

0

‖ũm(s)− ũn(s)‖V ds+ chm + chn

6 c

∫ t

0

‖ũm(s)− ũn(s)‖V ds+ chm + chn,

which, with (5.35) and (5.37), gives (5.34). �

Lemma 5.8. There exists a function u ∈ W 1,2(0, T ;V ) and two subsequences

of {um} and {ũm} again denoted by {um} and {ũm}, respectively, such that

um ⇀ u weakly in L2(0, T ;V ),(5.38)

u̇m ⇀ u̇ weakly in L2(0, T ;V ),(5.39)

um → u strongly in C([0, T ];L2(Γ3)
d),(5.40)

um → u strongly in C([0, T ];V ),(5.41)

ũm → u strongly in L2(0, T ;V ).(5.42)

P r o o f. We notice that L2(0, T ;V ) is a real Hilbert space equipped with the

canonical inner product

(w, v)L2(0,T ;V ) =

∫ T

0

(w(s), v(s))V ds ∀w, v ∈ L2(0, T ;V ).

Using standard compactness arguments, see [2], it follows from (5.28) and (5.29)

that there is an element u ∈ L2(0, T ;V ) and a subsequence of {um} again denoted
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by {um}, such that the convergences (5.38) and (5.39) hold. We now use (5.33) to
see that E = {um : [0, T ] → L2(Γ3)

d ; m ∈ N
∗}, the set of the traces of {um} on Γ3,

is equicontinuous. Moreover, since the trace map is a compact operator, it follows

from (5.28) that E(t) = {um(t) ; um ∈ E} is relatively compact for all t ∈ [0, T ].

Therefore, using a version of the Arzela-Ascoli theorem, see [11], and taking another

subsequence if necessary, we obtain (5.40). We turn now to the proof of (5.41). To

this end, we need to show that the subsequence {um}, obtained in (5.38)–(5.40), is
a Cauchy sequence in the Banach space C([0, T ];V ). It follows from (5.8), (4.16),

(4.17), (4.36), (4.28), (5.21), (5.22), (5.23) and (5.24) that {Gm}, {ũm}, {β̃m} and
{fm} satisfy the inequality

(5.43)





(F ũm(t), v − ũm(t))V + (Gm(t), v − ũm(t))V

+ jad(β̃m(t), ũm(t), v − ũm(t)) + ψ(ũm(t), v − ũm(t))

> (fm(t), v − ũm(t))V ∀ v ∈ V ∀ t ∈ [0, T ].

Now, let m,n ∈ N
∗, such that m > n > T . By taking (Gm, ũm, β̃m, fm, v) =

(Gm, ũm, β̃m, fm, ũn), (Gm, ũm, β̃m, fm, v) = (Gn, ũn, β̃n, fn, ũm) in (5.43) and adding

the two inequalities, we get





(F ũm(t)−F ũn(t), ũm(t)− ũn(t))V

6 ψ(ũm(t), ũn(t)− ũm(t)) + ψ(ũn(t), ũm(t)− ũn(t))

+ jad(β̃n(t), ũn(t), ũm(t)− ũn(t)) + jad(β̃m(t), ũm(t), ũn(t)− ũm(t))

+ (Gn(t)− Gm(t), ũm(t)− ũn(t))V

+ (fm(t)− fn(t), ũm(t)− ũn(t))V ∀ t ∈ [0, T ],

which combined with (4.30), (5.26), (5.27), (4.39), (4.47) and the inequality

ab 6
a2

mA

+
mA

4
b2 ∀ a, b ∈ R

leads us to

(5.44) ‖ũm(t)− ũn(t)‖2V 6 c‖ũm(t)− ũn(t)‖L2(Γ3)d + c‖Gn(t)− Gm(t)‖2V
+ c‖fm(t)− f(t)‖2V + c‖f(t)− fn(t)‖2V ∀ t ∈ [0, T ].

Using (5.30), we get

(5.45) ‖ũm(t)− ũn(t)‖V 6 ‖um(t)− un(t)‖V + chm + chn.
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Also, from (5.30) and (4.3), we deduce that

(5.46) ‖ũm(t)− ũn(t)‖L2(Γ3)d 6 ‖ũm(t)− um(t)‖L2(Γ3)d + ‖um(t)− un(t)‖L2(Γ3)d

+ ‖un(t)− ũn(t)‖L2(Γ3)d

6 ‖um(t)− un(t)‖L2(Γ3)d + chm + chn.

Now, it follows from (5.44), (5.45), (5.46), (5.34 ) and (5.31), that

‖ũm(t)− ũn(t)‖2V 6 c‖um(t)−un(t)‖L2(Γ3)d + c

∫ t

0

‖un(s)−um(s)‖2V ds+ chm+ chn.

This, together with the fact that

‖um(t)− un(t)‖2V 6 c‖um(t)− ũm(t)‖2V + c‖ũm(t)− ũn(t)‖2V + c‖ũn(t)− un(t)‖2V ,

implies that

‖um(t)− un(t)‖2V 6 c‖um(t)− un(t)‖L2(Γ3)d + c

∫ t

0

‖un(s)− um(s)‖2V ds

+ chm + chn ∀ t ∈ [0, T ].

We now use Lemma 2.1 in the last inequality to obtain

‖um(t)− un(t)‖2V 6 c‖um(t)− un(t)‖L2(Γ3)d + c

∫ t

0

‖um(s)− un(s)‖L2(Γ3)d ds

+ chm + chn ∀ t ∈ [0, T ].

Therefore, we have

‖um − un‖2C([0,T ];V ) 6 c‖um − un‖C([0,T ];L2(Γ3)d) + chn,

which combined with (5.40) implies that {um} is a Cauchy sequence in C([0, T ];V ).

Thus, using the convergence (5.38), we obtain (5.41). Finally, the convergence (5.42)

is a consequence of (5.30) and (5.41). �

In the rest of this paper u is the function obtained in Lemma 5.8, {um}, {Gm},
{ũm}, {β̃m} and {fm} represent appropriate subsequences of {um}, {Gm}, {ũm},
{β̃m} and {fm} such that the convergences (5.38)–(5.42) hold. Now, consider the
following problem.

P r o b l e m 5.9. Find a function β : [0, T ] → L∞(Γ3), such that

β̇(t) = Had(β(t), Rν(uν(t))) for a.e. t ∈ (0, T ),(5.47)

β(0) = β0.(5.48)
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Lemma 5.10. The problem (5.47)–(5.48) has a unique solution which satisfies

(5.49)

{
(i) β ∈ W 1,∞(0, T ;L∞(Γ3)),

(ii) 0 6 β(t) 6 1 ∀ t ∈ [0, T ] for a.e. x ∈ Γ3.

Moreover, we have

(5.50) β̃m → β strongly in L2(0, T ;L2(Γ3)).

P r o o f. The proof of the existence and uniqueness of the solution to the prob-

lem (5.47)–(5.48) which satisfies (5.49) can be obtained by arguments similar to

those used in the proof of [13], Lemma 4.3. To continue, we use (5.5), (5.7), (5.21)

and (5.22) to obtain

(5.51) β̃m(t) =

∫ t

0

Had(β̃m(s), Rν(ũmν(s))) ds+

∫ tmi

t

Had(β̃m(s), Rν(ũmν(s))) ds

+ hmHad(β0, Rν(u0ν)) + β0

for all t ∈ (tmi , t
m
i+1] with i ∈ {0, . . . ,m − 1}. It follows from (4.9), (4.43), (4.44),

(5.27), (5.51) and (5.47)–(5.48), that

‖β̃m(t)−β(t)‖L2(Γ3) 6 c

∫ t

0

‖β̃m(s)−β(s)‖L2(Γ3) ds+c

∫ t

0

‖ũm(s)−u(s)‖V ds+chm

for all t ∈ [0, T ]. Using Lemma 2.1 in the last inequality, we obtain

‖β̃m(t)− β(t)‖L2(Γ3) 6 c

∫ t

0

‖ũm(s)− u(s)‖V ds+ chm ∀ t ∈ [0, T ],

which gives

‖β̃m − β‖L2(0,T ;L2(Γ3)) 6 c‖ũm − u‖L2(0,T ;V ) + chm.

Passing to the limit as m→ ∞ in the last inequality by using (5.42), we get (5.50).
�

Lemma 5.11. The following convergences hold:

F ũm → Fu strongly in L2(0, T ;V ),(5.52)

fm → f strongly in L2(0, T ;V ),(5.53)

Gm → G̃ strongly in L2(0, T ;V ),(5.54)
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where the function G̃ : [0, T ] → V is defined by

(5.55) G̃(t) =
∫ t

0

G(t− s)u(s) ds ∀ t ∈ [0, T ].

P r o o f. Obviously, (4.31) and (5.42) gives (5.52). On the other hand, (5.53)

follows from (5.31). For the proof of (5.54), we use arguments similar to those in [14],

Lemma 4.10. �

We have the following convergence results.

Lemma 5.12. For all v ∈ L2(0, T ;V ) we have

lim
m→∞

∫ T

0

ϕ(β̃m(s), ũm(s), v(s)) ds =

∫ T

0

ϕ(β(s), u(s), v(s)) ds,(5.56)

lim
m→∞

∫ T

0

[ϕ(β̃m(s), ũm(s), u̇m(s))− ϕ(β(s), u(s), u̇m(s))] ds = 0,(5.57)

lim inf
m→∞

∫ T

0

ϕ(β̃m(s), ũm(s), u̇m(s)) ds >

∫ T

0

ϕ(β(s), u(s), u̇(s)) ds.(5.58)

P r o o f. Using the properties of the functional ϕ defined by (4.17), (4.3), (5.27)

and (5.49), we deduce that

(5.59)





∣∣∣∣
∫ T

0

[ϕ(β̃m(s), ũm(s), v(s))− ϕ(β(s), u(s), v(s))] ds

∣∣∣∣

6 c(‖β̃m − β‖L2(0,T ;L2(Γ3)) + ‖ũm − u‖L2(0,T ;V ))‖v‖L2(0,T ;V )

for all v ∈ L2(0, T ;V ). Therefore, the convergences (5.56)–(5.57) follow from (5.42),

(5.50), (5.59) and (5.29). To continue, let Φ: L2(0, T ;V ) → R be the functional

defined by

(5.60) Φ(v) =

∫ T

0

ϕ(β(s), u(s), v(s)) ds ∀ v ∈ L2(0, T ;V ),

where β is the unique solution of the problem (5.47)–(5.48). We use (4.17), (4.15),

(4.16), (4.38), (4.49), (5.49) and (5.60) to see that Φ is convex and continuous.

Therefore, we deduce that Φ is a weakly lower semicontinuous function, see [2],

which with (5.39) gives

(5.61) lim inf
m→∞

Φ(u̇m) > Φ(u̇).
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On the other hand, one has

(5.62)

∫ T

0

ϕ(β̃m(s), ũm(s), u̇m(s)) ds

=

∫ T

0

[ϕ(β̃m(s), ũm(s), u̇m(s)) ds− ϕ(β(s), u(s), u̇m(s))] ds+Φ(u̇m).

Thus, taking into account (5.57) and (5.61) when passing to the lim inf as m → ∞
in (5.62), we obtain (5.58). �

Fo u r t h step. We have now all the ingredients to prove Theorem 5.1.

P r o o f of Theorem 5.1. It follows from (5.41) and (5.20) that u(0) = u0. Let β

be the unique solution of the problem (5.47)–(5.48). Let t ∈ (0, T ), let r > 0, such

that t+ r ∈ (0, T ). For each w ∈ V we define a function v ∈ L2(0, T ;V ) by

v(s) =

{
w for s ∈ (t, t+ r),

u̇(s) elsewhere.

We now use (5.3), (5.21), (5.22), (5.23), (5.24), (5.25) to obtain the inequality

(5.63)





∫ T

0

(F ũm(s), v(s) − u̇m(s))V ds+

∫ T

0

(Gm(s), v(s) − u̇m(s))V ds

+

∫ T

0

ϕ(β̃m(s), ũm(s), v(s)) ds−
∫ T

0

ϕ(β̃m(s), ũm(s), u̇m(s)) ds

>

∫ T

0

(fm(s), v(s)− u̇m(s))V ds.

Passing to the lim sup as m → ∞ in (5.63), by using Lemma 5.11, Lemma 5.12 and
the convergence (5.39), we obtain

(5.64)





1

r

∫ t+r

t

(Fu(s), w − u̇(s))V ds+
1

r

∫ t+r

t

(G̃(s), w − u̇(s))V ds

+
1

r

∫ t+r

t

[ϕ(β(s), u(s), w) − ϕ(β(s), u(s), u̇(s))] ds

>
1

r

∫ t+r

t

(f(s), w − u̇(s))V ds ∀w ∈ V.

Letting r → 0 in (5.64) and keeping in mind (5.55), we conclude that {u, β} is
a solution of the problem (4.25)–(4.27). On the other hand, using (5.32), we obtain

‖u(t)− u(s)‖V 6 ‖u(t)− um(t)‖V + ‖um(t)− um(s)‖V + ‖um(s)− u(s)‖V
6 ‖u(t)− um(t)‖V + c|t− s|+ ‖um(s)− u(s)‖V ∀ t, s ∈ [0, T ].
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Passing to the limit as m→ ∞ in the last inequality and using (5.41), we get

‖u(t)− u(s)‖V 6 c|t− s| ∀ t, s ∈ [0, T ].

Thus, u satisfies (5.1). The regularity (5.2) follows from Lemma 5.10. Finally, we

notice that the uniqueness of the solution remains, as far as we know, an open

question. �
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