[5] Cerami, G.:
An existence criterion for the critical points on unbounded manifolds. Rend., Sci. Mat. Fis. Chim. Geol. 112 (1978), 332-336 Italian.
MR 0581298 |
Zbl 0436.58006
[13] Kogoj, A. E., Lanconelli, E.:
Linear and semilinear problems involving $\Delta_\lambda$-Laplacians. Electron. J. Differ. Equ. 2018 (2018), Article ID 25, 167-178.
MR 3883635 |
Zbl 1400.35130
[16] Li, G., Wang, C.:
The existence of a nontrivial solution to a nonlinear elliptic problem of linking type without the Ambrosetti-Rabinowitz condition. Ann. Acad. Sci. Fenn., Math. 36 (2011), 461-480.
DOI 10.5186/aasfm.2011.3627 |
MR 2865507 |
Zbl 1234.35095
[21] Luyen, D. T.:
Existence of nontrivial solution for fourth-order semilinear $\Delta_{\gamma}$-Laplace equation in $\mathbb{R}^N$. Electron. J. Qual. Theory Differ. Equ. 2019 (2019), Article ID 78, 12 pages.
DOI 10.14232/ejqtde.2019.1.78 |
MR 4028910 |
Zbl 07174921
[23] Luyen, D. T., Tri, N. M.:
Global attractor of the Cauchy problem for a semilinear degenerate damped hyperbolic equation involving the Grushin operator. Ann. Pol. Math. 117 (2016), 141-161.
DOI 10.4064/ap3831-3-2016 |
MR 3539074 |
Zbl 1356.35057
[26] Luyen, D. T., Tri, N. M.:
Infinitely many solutions for a class of perturbed degenerate elliptic equations involving the Grushin operator. Complex Var. Elliptic Equ. 65 (2020), 2135-2150.
DOI 10.1080/17476933.2020.1730824 |
MR 4170200
[28] Rabinowitz, P. H.:
Minimax Methods in Critical Point theory with Applications to Differential Equations. Regional Conference Series in Mathematics 65. American Mathematical Society, Providence (1986).
DOI 10.1090/cbms/065 |
MR 0845785 |
Zbl 0609.58002
[30] Thuy, N. T. C., Tri, N. M.:
Some existence and nonexistence results for boundary value problems for semilinear elliptic degenerate operators. Russ. J. Math. Phys. 9 (2002), 365-370.
MR 1965388 |
Zbl 1104.35306
[32] Thuy, P. T., Tri, N. M.:
Long time behavior of solutions to semilinear parabolic equations involving strongly degenerate elliptic differential operators. NoDEA, Nonlinear Differ. Equ. Appl. 20 (2013), 1213-1224.
DOI 10.1007/s00030-012-0205-y |
MR 3057173 |
Zbl 1268.35018
[33] Tri, N. M.:
Critical Sobolev exponent for degenerate elliptic operators. Acta Math. Vietnam. 23 (1998), 83-94.
MR 1628086 |
Zbl 0910.35060
[35] Tri, N. M.: Semilinear Degenerate Elliptic Differential Equations: Local and Global Theories. Lambert Academic Publishing, Saarbrücken (2010).
[36] Tri, N. M.: Recent Progress in the Theory of Semilinear Equations Involving Degenerate Elliptic Differential Operators. Publ. House Sci. Technology, Hanoi (2014).