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Abstract. In this article, we study the existence of nontrivial weak solutions for the
following boundary value problem:

−∆γu = f(x, u) in Ω, u = 0 on ∂Ω,

where Ω is a bounded domain with smooth boundary in R
N , Ω ∩ {xj = 0} 6= ∅ for some j,

∆γ is a subelliptic linear operator of the type

∆γ :=
N∑

j=1

∂xj (γ
2

j ∂xj ), ∂xj :=
∂

∂xj
, N > 2,

where γ(x) = (γ1(x), γ2(x), . . . , γN (x)) satisfies certain homogeneity conditions and degen-
erates at the coordinate hyperplanes and the nonlinearity f(x, ξ) is of subcritical growth
and does not satisfy the Ambrosetti-Rabinowitz (AR) condition.

Keywords: ∆γ -Laplace problem; Cerami condition; variational method; weak solution;
Mountain Pass Theorem

MSC 2020 : 35J70, 35J20, 35J25, 35D30

1. Introduction

In the last decades, the boundary value problem for semilinear elliptic equations

(1.1) −∆u = f(x, u) in Ω, u = 0 on ∂Ω,

has been studied by many authors. The following AR condition, introduced in [2],
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(AR) For some θ > 2, and R > 0, we have

θF (x, ξ) 6 f(x, ξ)ξ ∀ |ξ| > R, ∀ x ∈ Ω,

where F (x, ξ) =
∫ ξ

0
f(x, τ) dτ , plays an important role in their studies. With

this (AR) condition, one can use the classical version of the Mountain Pass The-

orem of Ambrosetti and Rabinowitz to study the existence of solutions (see, for

example, [1], [2], [28] and references therein). Although the (AR) condition is quite

natural and important, there are many problems where the nonlinear term f(x, ξ)

does not satisfy the (AR) condition, for example,

f(x, ξ) = ξ ln (1 + |ξ|).

For this reason, in recent years, some authors have studied problem (1.1) by trying

to drop the (AR) condition, for instance, Schechter and Zou [29], Miyagaki and

Souto [27], Lam and Lu [14], [15], Liu [18], Liu and Wang [19].

Boundary value problems for nonlinear degenerate elliptic differential equations

were treated in [10] and subsequently in [8], [11]. In [33], the critical exponent

phenomenon was observed for a model of the Grushin-type operators. The results

were then generalized in [30] for a large class of semilinear degenerate elliptic dif-

ferential equations. Recently, in [31], Thuy and Tri have extended the research to

a more complicated class of nonlinear degenerate elliptic differential operators. Very

recently, in [12] the authors investigated the ∆γ-Laplace operator under the addi-

tional assumption that the operator is homogeneous of degree two with respect to

a semigroup of dilations in R
N .

In this paper, we study the existence of nontrivial weak solutions to the following

problem:

(1.2) −∆γu = f(x, u) in Ω, u = 0 on ∂Ω,

where Ω is a bounded domain with smooth boundary in R
N , Ω ∩ {xj = 0} 6= ∅ for

some j, and ∆γ is a subelliptic operator of the form

∆γ :=

N∑

j=1

∂xj(γ
2
j ∂xj), γ = (γ1, γ2, . . . , γN ) : R

N → R
N .

Here, the functions γj : R
N −→ R are assumed to be continuous, different from zero

and of class C1 in R
N \Π, where

Π :=

{
x = (x1, x2, . . . , xN ) ∈ R

N :

N∏

j=1

xj = 0

}
.
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Moreover, we assume the following properties:

(i) There exists a semigroup of dilations {δt}t>0 such that

δt : R
N −→ R

N ,

(x1, . . . , xN ) 7−→ δt(x1, . . . , xN ) = (tε1x1, . . . , t
εNxN ),

where 1 = ε1 6 ε2 6 . . . 6 εN , such that γj is δt-homogeneous of degree εj − 1, i.e.,

γj(δt(x)) = tεj−1γj(x) ∀x ∈ R
N , ∀t > 0, j = 1, . . . , N.

The number

Ñ :=

N∑

j=1

εj

is called the homogeneous dimension of RN with respect to {δt}t>0.

(ii)

γ1 = 1, γj(x) = γj(x1, x2, . . . , xj−1), j = 2, . . . , N.

(iii) There exists a constant ̺ > 0 such that

0 6 xk∂xk
γj(x) 6 ̺γj(x) ∀ k ∈ {1, 2, . . . , j − 1} ∀ j = 2, . . . , N,

and for every x ∈ R
N

+ := {(x1, . . . , xN ) ∈ R
N : xj > 0 ∀ j = 1, 2, . . . , N}.

(iv) Equalities γj(x) = γj(x
∗) (j = 1, 2, . . . , N) are satisfied for every x ∈ R

N ,

where

x∗ = (|x1|, . . . , |xN |) if x = (x1, x2, . . . , xN ).

The class of ∆γ-operators includes many degenerate elliptic operators such as the

Grushin-type operator

Gα := ∆x + |x|2α∆y, α > 0,

where (x, y) denotes a point of RN1 × R
N2 (see [9]), and the operator of the form

Pα,β := ∆x +∆y + |x|2α|y|2β∆z, (x, y, z) ∈ R
N1 × R

N2 × R
N3 ,

where α, β are non-negative real numbers (see [31]). Many aspects of the theory of

degenerate elliptic differential operators are presented in monographs [35], [36] (see

also some recent results in [3], [7], [13], [20], [21], [22], [23], [24], [26], [32], [34]).

To study problem (1.2), we make the following assumptions:
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(A1) f is a real Carathéodory function on Ω × R such that there exist q1 ∈ (2, 2∗γ)

(where 2∗γ := 2Ñ/(Ñ − 2)), ω ∈ K2,q1 (see Definition 2.2) and some positive

constant C0 such that

|f(x, ξ)| 6 |ω(x)ξ|q1−1 + C0 ∀ (x, ξ) ∈ Ω× R;

(A2) there exist C ∈ [0,∞) and h ∈ L1(Ω) such that |f(x, ξ)| 6 h(x) for every x

in Ω and |ξ| 6 C;

(A3) there exists a non-positive function k in Lq2(Ω), q2 > Ñ/2 such that k(x) 6

f(x, ξ)/ξ for every (x, ξ) ∈ Ω× R;

(A4) f(x, 0) = 0 for every x in Ω and the following limit holds uniformly for a.e.

x ∈ Ω:

lim
ξ→0

f(x, ξ)

ξ
= 0;

(A5) lim
ξ→∞

f(x, ξ)/ξ = ∞ or lim
ξ→−∞

f(x, ξ)/ξ = ∞ a.e. in Ω;

(A6) f(x, ξ)/ξ is increasing in ξ > C and decreasing in ξ 6 −C for every x in Ω.

Our main result is given by the following theorem.

Theorem 1.1. Suppose that f satisfies (A1)–(A6). Then the boundary value

problem (1.2) has a nontrivial weak solution.

R em a r k 1.2. Suppose that f is continuous on Ω×R and satisfies the following

conditions:

(A1′) There exist q3 ∈ (2, 2∗γ) and a positive real number C1 such that

|f(x, ξ)| 6 C1(1 + |ξ|q3−1) ∀ (x, ξ) ∈ Ω× R.

(A4′) f(x, 0) = 0 for every x in Ω and lim
ξ→0

f(x, ξ)/ξ = 0 uniformly in Ω.

(A5′) lim
ξ→∞

f(x, ξ)/ξ = ∞ or lim
ξ→−∞

f(x, ξ)/ξ = ∞ uniformly in Ω.

Then f satisfies (A1)–(A5). Therefore, our theorem improves the corresponding

results in [31], [35], [36].

This article is organized as follows. In Section 2 we present some definitions and

preliminary results. In Section 3 we give the proof of our results.
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2. Preliminary results

2.1. Function spaces and embedding theorem. For a function u of class C1,

we put

∇γu := (γ1∂x1
u, γ2∂x2

u, . . . , γN∂xNu), |∇γu| :=

( N∑

j=1

|γj∂xju|
2

)1/2

.

If Ω is a bounded domain in R
N , we denote by

S2
γ,0(Ω)

the closure of C1
0 (Ω) with respect to the norm

‖u‖S2

γ,0(Ω) :=

(∫

Ω

|∇γu|
2 dx

)1/2

.

From Proposition 3.2 and Theorem 3.3 in [12], we have the following embedding

result.

Proposition 2.1. Assume Ω is a bounded domain in R
N , Ñ > 2. Then the

embedding S2
γ,0(Ω) →֒ Lp(Ω) is continuous for any p ∈ [1, 2∗γ ], i.e., there exists

Cp > 0 such that ‖u‖Lp(Ω) 6 Cp‖u‖S2

γ,0(Ω) for all u ∈ S2
γ,0(Ω). Moreover, S

2
γ,0(Ω)

is compactly embedded into Lp(Ω) only for p ∈ [1, 2∗γ), where L
p(Ω) denotes the

Lebesgue space with the standard norm ‖·‖Lp(Ω).

Definition 2.2. Let σ be a measurable function on Ω. We put

Tσu = σu ∀u ∈ S2
γ,0(Ω).

We say that

(i) σ is of class C2,p, if Tσ is a continuous mapping from S2
γ,0(Ω) into L

p(Ω),

(ii) σ is of class K2,p, if Tσ is a compact mapping from S2
γ,0(Ω) into L

p(Ω).

We have the following results.

Theorem 2.3. Let us assume that ω1 ∈ C2,p1
, ω2 ∈ C2,p2

such that ω1 and ω2 are

non-negative, where p1, p2 ∈ [1,∞), p1 < p2. Put

ω = ω
p1(p2−p)/(p(p2−p1))
1 ω

p2(p−p1)/(p(p2−p1))
2 for any p ∈ (p1, p2).

Then ω ∈ C2,p.
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P r o o f. From ω1 ∈ C2,p1
, ω2 ∈ C2,p2

, hence there exists a positive real number C2

such that

(2.1)

(∫

Ω

ωpi

i |u|pi dx

)1/pi

6 C2‖u‖S2

γ,0(Ω) ∀u ∈ S2
γ,0(Ω), i = 1, 2.

By p = p1(p2 − p)/(p2 − p1) + p2(p− p1)/(p2 − p1), applying Hölder’s inequality

and (2.1), we get

(∫

Ω

ωp|u|p dx

)1/p

=

(∫

Ω

ω
p1(p2−p)/(p2−p1)
1 |u|p1(p2−p)/(p2−p1)

× ω
p2(p−p1)/(p2−p1)
2 |u|p2(p−p1)/(p2−p1)p2 dx

)1/p

6

{(∫

Ω

ωp1

1 |u|p1 dx

)(p2−p)/(p2−p1)(∫

Ω

ωp2

2 |u|p2 dx

)(p−p1)/(p2−p1)}1/p

6C2‖u‖S2

γ,0(Ω) ∀u∈S2
γ,0(Ω).

The proof of Theorem 2.3 is complete. �

Theorem 2.4. Let us assume that ω ∈ C2,p and θ are measurable functions on Ω

such that ω > 0 and |θ| 6 ωα, where p ∈ [1, 2∗γ), α ∈ (0, 1). Then θ is of class K2,p.

P r o o f. Since ω is of class C2,p, Tω is continuous from S2
γ,0(Ω) into L

p(Ω) and by

Proposition 2.1, we have

(2.2)

(∫

Ω

|u|pωp dx

)1/p

6 Cp‖u‖S2

γ,0(Ω) ∀u ∈ S2
γ,0(Ω).

By ωα(x) 6 1 + ω(x) for every x in Ω and 1, ω ∈ C2,p hence ωα belongs to C2,p.

Thus θ is of class C2,p. Let M be a positive real number and {un}
∞
n=1 be a sequence

in S2
γ,0(Ω), such that ‖un‖S2

γ,0(Ω) 6 M for all n. By Proposition 2.1, we have (by

passing to a subsequence if necessary)

(2.3) un ⇀ u weakly in S2
γ,0(Ω) as n → ∞,

un → u strongly in Lp(Ω) as n → ∞.

Therefore

‖u‖S2

γ,0(Ω) 6 lim inf
n→∞

‖un‖S2

γ,0(Ω) 6 M.

We shall prove that {Tθ(un)}∞n=1 converges to Tθ(u) in Lp(Ω). Let ε be a positive

real number. Choose a positive real number δ such that

(2.4) (2CpM)pδ(α−1)p <
εp

2
.
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Put Ω′ = {x ∈ Ω: ω(x) > δ}. From (2.2) and (2.4), we get that

(2.5)

∫

Ω

|θ(un − u)|p dx =

∫

Ω

|un − u|p|θ|p dx

6

∫

Ω′

|un − u|pωαp dx+

∫

Ω\Ω′

|un − u|pωαp dx

6 δ(α−1)p

∫

Ω′

|un − u|pωp dx+ δαp
∫

Ω\Ω′

|un − u|s dx

6 δ(α−1)p

∫

Ω

|un − u|pωp dx+ δαp
∫

Ω

|un − u|p dx

6 δ(α−1)p(Cp‖un − u‖S2

γ,0(Ω))
p + δαp

∫

Ω

|un − u|p dx

6 δ(α−1)p(2CpM)p + δαp
∫

Ω

|un − u|p dx

6
εp

2
+ δpα

∫

Ω

|un − u|p dx.

By (2.3), there exists an integer n0 such that

(2.6)

∫

Ω

|un − u|p dx 6 δ−αp ε
p

2
∀n > n0.

Combining (2.5) and (2.6), we complete the proof. �

Corollary 2.5. Let p ∈ [1, 2∗γ), η ∈ (2pÑ/(2Ñ − p(Ñ − 2)),∞) and θ ∈ Lη(Ω).

Then θ is of class K2,p.

P r o o f. Let α ∈ (0, 1) such that αη = 2pÑ/(2Ñ − p(Ñ − 2)) and ω = |θ|1/α.

Then ω is in L2pÑ/(2Ñ−p(Ñ−2))(Ω). By

2Ñ − p(Ñ − 2)

2Ñ
+

p(Ñ − 2)

2Ñ
= 1,

applying Hölder’s inequality, we obtain

∫

Ω

|ωu|p dx 6

(∫

Ω

|ω|2pÑ/(2Ñ−p(Ñ−2)) dx

)2Ñ−p(Ñ−2)/2Ñ

×

(∫

Ω

|u|2Ñ/(Ñ−2) dx

)p(Ñ−2)/2Ñ

∀u ∈ S2
γ,0(Ω),

which implies that Tω is continuous at 0 in S2
γ,0(Ω). Thus Tω is a linear continuous

map from S2
γ,0(Ω) into L

p(Ω). By Theorem 2.4, we have θ is of class K2,p. �
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E x am p l e 2.6. Let γ = (1, 1, |x1x2|), Ω = {x = (x1, x2, x3) ∈ R
3 : |x| < 1} and

p = 3. Then N = 3, Ñ = 5; 2pÑ/(2Ñ − p(Ñ − 2)) = 2 · 3 · 5/(5 · 2− 3(5− 2)) =

30 < 40. Put ω0 = |x|−1/50 sin(2017|x|), then ω0 is in L
40(Ω). Thus by Corollary 2.5,

ω0 is of class K2,3.

Corollary 2.7. Let p ∈ [1, 2∗γ), α be in (0, 1) and η ∈ C2,2. Then

θ = ηα2(2
∗

γ−p)/(p(2∗γ−2))

is of class K2,p.

P r o o f. Put ω1 = η, ω2 = 1, p1 = 2, p2 = 2∗γ . By Proposition 2.1, ω2 ∈ C2,2∗γ .

By Theorem 2.3, we see that η2(2
∗

γ−p)/(p(2∗γ−2)) ∈ C2,p. Thus by Theorem 2.4,

ηα2(2
∗

γ−p)/(p(2∗γ−2)) is of class K2,p. �

E x am p l e 2.8. Let γ = (1, 1, |x1x2|), Ω = {x = (x1, x2, x3) ∈ R
3 : |x| < 1},

p = 3, α = 3
4 and η(x) = (1−|x|2)−1/2 for every x in Ω, hence η ∈ C2,2, Ñ = 5. Note

that 2∗γ = 2Ñ/(Ñ − 2) = 10
3 and

α
2(2∗γ − p)

p(2∗γ − 2)
= 2.

Put θ(x) = (1− |x|2)−1. Then θ ∈ K2,3.

E x am p l e 2.9. Let γ = (1, 1, |x1x2|), Ω = {x ∈ R
3 : |x| < 1}, p = 3, α = 3

4

and ̺(x) = (12 − |x|2)2(1− |x|2)−1 for every x in Ω. By Example 2.8, ̺ ∈ K2,3. Put

a(x) = ̺(x)2 = (12 − |x|2)4(1− |x|2)−2. Thus a is not integrable on Ω.

Theorem 2.10. Let p ∈ [1, 2∗γ), ω be in K2,p, a function g ∈ Lp/(p−1)(Ω) and f

be a Carathéodory function from Ω× R into R. Assume

|f(x, ξ)| 6 |ω(x)|p−1|ξ|p−1 + g(x) ∀ (x, ξ) ∈ Ω× R.

Then Φ1(u) ∈ C1(S2
γ,0(Ω),R) and

〈Φ′
1(u), v〉 =

∫

Ω

f(x, u(x))v(x) dx

for all v ∈ S2
γ,0(Ω), where

Φ1(u) =

∫

Ω

F (x, u(x)) dx,

and F (x, ξ) =
∫ ξ

0
f(x, τ) dτ .
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P r o o f. With a slight modification, the proof of this lemma is similar to the one

of Lemma 2.3 in [25]. We omit the details. �

Define the Euler-Lagrange functional associated with problem (1.2) as follows:

Φ(u) =
1

2

∫

Ω

|∇γu|
2 dx−

∫

Ω

F (x, u(x)) dx.

From Theorem 2.10 and the fact that f satisfies (A1), we have that Φ is well-defined

on S2
γ,0(Ω) and Φ ∈ C1(S2

γ,0(Ω),R) with

〈Φ′(u), v〉 =

∫

Ω

∇γu · ∇γv dx−

∫

Ω

f(x, u(x))v(x) dx

for all v ∈ S2
γ,0(Ω).

Recall that a function u ∈ S2
γ,0(Ω) is called a weak solution of problem (1.2) if

∫

Ω

∇γu · ∇γv dx =

∫

Ω

f(x, u(x))v(x) dx ∀ v ∈ S2
γ,0(Ω).

Hence, the weak solutions of problem (1.2) are critical points of the functional Φ.

2.2. Mountain Pass Theorem.

Definition 2.11. Let X be a real Banach space with its dual space X
∗ and

Φ ∈ C1(X,R). For c ∈ R we say that Φ satisfies the (C)c condition if for any

sequence {un}∞n=1 ⊂ X with

Φ(un) → c and (1 + ‖un‖X)‖Φ
′(un)‖X∗ → 0,

there exists a subsequence {unk
}∞k=1 that converges strongly in X.

We will use the following version of the Mountain Pass Theorem:

Lemma 2.12 (see [5], [6]). Let X be a real Banach space and let Φ ∈ C1(X,R)

satisfy the (C)c condition for any c ∈ R,Φ(0) = 0 and

(i) there exist constants ̺, α > 0 such that Φ(u) > α for all u ∈ X, ‖u‖X = ̺;

(ii) there exists a u1 ∈ X, ‖u1‖X > ̺ such that Φ(u1) 6 0.

Then β := inf
λ∈Λ

max
06t61

Φ(λ(t)) > α is a critical value of Φ, where

Λ := {λ ∈ C([0; 1],X) : λ(0) = 0, λ(1) = u1}.
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3. Proof of the main theorem

We prove Theorem 1.1 by verifying that all conditions of Lemma 2.12 are satisfied.

First, we check condition (i) in Lemma 2.12.

Lemma 3.1. Assume that f satisfies conditions (A1) and (A4). Then there exist

̺, α > 0 such that

Φ(u) > α ∀u ∈ S2
γ,0(Ω), ‖u‖S2

γ,0(Ω) = ̺.

P r o o f. Suppose by contradiction that

inf
{
Φ(u) : u ∈ S2

γ,0(Ω), ‖u‖S2

γ,0(Ω) =
1

n

}
6 0 ∀n ∈ N.

Then, there exists a sequence {un}∞n=1 in S2
γ,0(Ω) such that ‖un‖S2

γ,0(Ω) = 1/n and

Φ(un) < 1/n3. Hence, we have

1

n
>

Φ(un)

‖un‖2S2

γ,0(Ω)

=
1

2
−

∫

Ω

F (x, un(x))

‖un‖2S2

γ,0(Ω)

dx,

and thus

(3.1)

∫

Ω

F (x, un(x))

‖un‖2S2

γ,0(Ω)

dx >
1

2
−

1

n
.

By (A4), for each ε > 0, we can find a number δ > 0 such that

(3.2) |F (x, ξ)| 6 εξ2 for |ξ| 6 δ.

From (A1), we deduce that

(3.3) |F (x, ξ)| 6
1

q1
|ω(x)|q1−1|ξ|q1 + C(δ)|ξ|q1 for|ξ| > δ.

It follows from (3.2), (3.3), Proposition 2.1 and Hölder’s inequality that
∣∣∣∣
∫

Ω

F (x, un(x)) dx

∣∣∣∣ 6 ε

∫

Ω

|un(x)|
2 dx+

1

q1

∫

Ω

|ω(x)|q1−1|un(x)|
q1 dx

+ C(δ)

∫

Ω

|un(x)|
q1 dx

6
1

q1

(∫

Ω

|ω(x)un(x)|
q1 dx

)(q1−1)/q1(∫

Ω

|un(x)|
q1 dx

)1/q1

+ ε‖un‖
2
L2(Ω) + C(δ)‖un‖

q1
Lq1(Ω)

6 εC2
2‖un‖

2
S2

γ,0(Ω) +
Cq1

q1

q1
‖un‖

q1
S2

γ,0(Ω)
+ C(δ)Cq1

q1 ‖un‖
q1
S2

γ,0(Ω)
,
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hence ∣∣∣∣
∫

Ω

F (x, un(x))

‖un‖2S2

γ,0(Ω)

dx

∣∣∣∣ → 0 as n → ∞,

which yields a contradiction to (3.1). Lemma 3.1 is proved. �

Next, we check condition (ii) in Lemma 2.12.

Lemma 3.2. Let ̺ be as in Lemma 3.1 and assume that f satisfies conditions (A3)

and (A5). Then there exists u1 in S2
γ,0(Ω) \B(0, ̺) such that Φ(u1) < 0.

P r o o f. We limit ourselves to consider the case

(3.4) lim
ξ→∞

f(x, ξ)

ξ
= ∞.

Take a point u ∈ S2
γ,0(Ω) such that ‖u‖S2

γ,0(Ω) = 1, u > 0 and ‖u‖L2(Ω) 6= 0. Then,

for any constant R > 0

Φ(Ru) =
R2

2
−

∫

Ω

F (x,Ru(x)) dx.

Since we are assuming (3.4), there exists a number M > 0 such that f(x, ξ) >

4ξ/‖u‖2L2(Ω) for ξ > M ; moreover, from (A3) we get

F (x, ξ) >

∫ M

0

k(x)τ dτ = k(x)
M2

2
for 0 6 ξ 6 M,

F (x, ξ) =

∫ M

0

f(x, τ) dτ +

∫ ξ

M

f(x, τ) dτ

> k(x)
M2

2
+

2ξ2

‖u‖2L2(Ω)

−
2M2

‖u‖2L2(Ω)

for ξ > M.

As 0 6 Ru 6 M on Ωu
M/R := {x ∈ Ω: |u(x)| 6 M/R}, we have

∫

Ω

F (x,Ru(x)) dx =

∫

Ωu
M/R

F (x,Ru(x)) dx+

∫

Ω\Ωu
M/R

F (x,Ru(x)) dx

>

∫

Ω\Ωu
M/R

2R2u2(x)

‖u‖2L2(Ω)

dx+M2

∫

Ω

k(x) dx−
2M2

‖u‖2L2(Ω)

meas(Ω),

where meas(·) denotes the Lebesgue measure of a set in RN . By Lebesgue’s theorem,

there exists a number R0 such that

∫

Ω\Ωu
M/R0

u2(x) dx >
‖u‖2L2(Ω)

2
.
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Therefore, if R > R0, then

∫

Ω

F (x,Ru(x)) dx > R2 +M2

∫

Ω

k(x) dx−
2M2

‖u‖2L2(Ω)

meas(Ω).

Consequently, if

R > max

{
2

√
−M2

∫

Ω

k(x) dx+
2M2

‖u‖2L2(Ω)

meas(Ω), R0

}
,

then

Φ(Ru) 6 −M2

∫

Ω

k(x) dx+
2M2

‖u‖2L2(Ω)

meas(Ω)−
R2

2
< 0.

Thus, Φ satisfies the condition (ii) in Lemma 2.12. �

Lemma 3.3. Assume that f satisfies conditions (A2) and (A6). Then there exists

a positive real number C3 such that

f(x, s)s− 2F (x, s) 6 f(x, t)t− 2F (x, t) + C3h(x) ∀x ∈ Ω, |s| 6 |t|.

P r o o f. Since (A6) holds, by Lemma 2.3 in [18], we have that, for any x ∈ Ω,

ξ 7→ f(x, ξ)ξ − 2F (x, ξ)

is increasing in ξ > C and decreasing in ξ 6 −C. Hence,

f(x, s)s− 2F (x, s) 6 f(x, t)t− 2F (x, t) ∀x ∈ Ω, C 6 s 6 t.

Let x ∈ Ω and ξ ∈ [−C,C]. By (A2), we get that

|f(x, ξ)| 6 h(x), |F (x, ξ)| 6

∫ ξ

0

h(x) dτ 6 Ch(x).

Thus,

f(x, s)s− 2F (x, s) 6f(x, t)t− 2F (x, t) + 6Ch(x) ∀x ∈ Ω, 0 6 s 6 t 6 C,

f(x, s)s− 2F (x, s) 6f(x,C)C − 2F (x,C) + 6Ch(x)

6f(x, t)t− 2F (x, t) + 6Ch(x) ∀x ∈ Ω, 0 6 s 6 C 6 t.

Thus we get the lemma for 0 6 s 6 t. Similarly we obtain it for t 6 s 6 0. The

proof of Lemma 3.3 is complete. �
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We now show the main lemma of this paper.

Lemma 3.4. Assume that f satisfies conditions (A1)–(A3), (A5) and (A6).

Then Φ satisfies the (C)c condition for all c ∈ R.

P r o o f. Let {un}∞n=1 ⊂ S2
γ,0(Ω) be a (C)c sequence, i.e.,

(3.5) Φ(un) → c as n → ∞, lim
n→∞

(1 + ‖un‖S2

γ,0(Ω))‖Φ
′(un)‖(S2

γ,0(Ω))∗ = 0,

hence,

(3.6) lim
n→∞

∫

Ω

(1
2
f(x, un(x))un(x) − F (x, un(x))

)
dx

= lim
n→∞

(
Φ(un)−

1

2
〈Φ′(un), un〉

)
= c.

We first show that {un}∞n=1 is bounded in S2
γ,0(Ω) by a contradiction argument. By

passing to a subsequence if necessary, we can assume that ‖un‖S2

γ,0(Ω) > 1 and

(3.7) ‖un‖S2

γ,0(Ω) → ∞ as n → ∞.

Setting

wn =
un

‖un‖S2

γ,0(Ω)

,

we get ‖wn‖S2

1,0(Ω) = 1, so we can extract a subsequence relabelled {wn}∞n=1 such

that {wn}∞n=1 converges weakly to w in S
2
γ,0(Ω). Since Ω is bounded, Proposition 2.1

implies that

(3.8) wn → w strongly in Lp(Ω), 1 6 p < 2∗γ as n → ∞,

wn → w a.e. in Ω as n → ∞.

Now, we consider two possible cases: w = 0 or w 6= 0.

Case 1: If w = 0, then for any n ∈ N there exists tn ∈ [0, 1] such that

(3.9) Φ(tnun) = max{Φ(sun) : s ∈ [0, 1]}.

Fix a positive integer m and put vn = (4m)1/2wn for every positive integer n.

Therefore, we have

(3.10) vn ⇀ 0 weakly in S2
γ,0(Ω) as n → ∞,

vn → 0 a.e. in Ω as n → ∞,

vn → 0 strongly in Lp(Ω), 1 6 p < 2∗γ as n → ∞,

ωvn → 0 strongly in Lq1(Ω) as n → ∞.
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By (A1), applying Hölder’s inequality, we get

(3.11)

∣∣∣∣
∫

Ω

F (x, vn(x)) dx

∣∣∣∣ 6
∫

Ω

|ω(x)vn(x)|
q1−1|vn(x)| dx+ C0

∫

Ω

|vn(x)| dx

6

(∫

Ω

|ω(x)vn(x)|
q1 dx

)(q1−1)/q1(∫

Ω

|vn(x)|
q1 dx

)1/q1

+ C0

∫

Ω

|vn(x)| dx.

From (3.10) and (3.11), we have

∣∣∣∣
∫

Ω

F (x, vn(x)) dx

∣∣∣∣ → 0 as n → ∞,

hence,

lim
n→∞

∫

Ω

F (x, vn(x)) dx = 0.

Since lim
n→∞

(4m)1/2‖un‖
−1
S2

γ,0(Ω)
= 0, there exists an integer Nm such that

Φ(tnun) > Φ(vn) = 2m−

∫

Ω

F (x, vn(x)) dx > m ∀n > Nm,

that is, lim
n→∞

Φ(tnun) = ∞. Since Φ(0) = 0 and lim
n→∞

Φ(un) = c, it implies tn ∈ (0, 1)

for any sufficiently large n and

∫

Ω

|∇γ(tnun)|
2 dx−

∫

Ω

f(x, tnun(x))tnun(x) dx

= 〈Φ′(tnun), tnun〉 = tn
d

dt

∣∣∣
t=tn

Φ(tun) = 0.

Therefore, by Lemma 3.3, we get

∫

Ω

(1
2
f(x, un(x))un(x)− F (x, un(x))

)
dx

>

∫

Ω

(1
2
f(x, tnun(x))tnun(x) − F (x, tnun(x))

)
dx− C3‖h‖L1(Ω)

=

∫

Ω

(1
2
|∇γtnun|

2 − F (x, tnun(x))
)
dx− C3‖h‖L1(Ω)

= Φ(tnun)− C3‖h‖L1(Ω) → ∞,

which contradicts (3.6).
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Case 2: If w 6= 0, the Lebesgue measure of the set Θ = {x ∈ Ω: w(x) 6= 0} is

positive. We have lim
n→∞

|un(x)| = ∞ for every x in Θ. Hence, by (A5) we deduce

(3.12)
f(x, un(x))

un(x)
→ ∞ as n → ∞.

By (3.8) and Theorem 4.9 in [4], there exists a function w0 ∈ Lp(Ω) such that

|wn| 6 w0 ∀n, a.e. on Ω.

Now, using condition (A3) we have

f(x, ξun(x))

ξun(x)
·

ξ|un(x)|2

‖un‖2S2

γ,0(Ω)

> ξk(x)w2
0(x) ∀x ∈ Ω, ξ ∈ (0, 1);

thus, since kw2
0 ∈ L1(Ω) (as k ∈ Lq2(Ω) for some q2 > Ñ/2), using (3.12), (A3) and

the fact that Φ(un) → c, we deduce via the generalized Fatou lemma that

1

2
= lim inf

n→∞

[1
2
−

Φ(un)

‖un‖2S2

γ,0(Ω)

]
= lim inf

n→∞

∫

Ω

F (x, un(x))

‖un‖2S2

γ,0(Ω)

dx

= lim inf
n→∞

∫

Ω

∫ 1

0

f(x, ξun(x))

ξun(x)
· ξ|wn(x)|

2 dξ dx (since w ≡ 0 on Ω \Θ)

= lim inf
n→∞

∫

Θ

∫ 1

0

f(x, ξun(x))

ξun(x)
· ξ|wn(x)|

2 dξ dx

>

∫

Θ

∫ 1

0

lim inf
n→∞

f(x, ξun(x))

ξun(x)
· ξ|wn(x)|

2 dξ dx = ∞,

which is impossible. In any case, we obtain a contradiction. Thus, the sequence

{un}∞n=1 is bounded in S2
γ,0(Ω). Therefore, we can (by passing to a subsequence if

necessary) suppose that

(3.13) un ⇀ u weakly in S2
γ,0(Ω) as n → ∞,

un → u a.e. in Ω as n → ∞,

un → u strongly in Lp(Ω), 1 6 p < 2∗γ as n → ∞,

ωun → ωu strongly in Lq1(Ω) as n → ∞.

Thus by (A1), we have

(3.14)

∣∣∣∣
∫

Ω

f(x, un(x))(un(x) − u(x)) dx

∣∣∣∣ 6 C0

∫

Ω

|un(x) − u(x)| dx

+

∫

Ω

|un(x)− u(x)||ω(x)un(x)|
p−1 dx 6 C0‖un − u‖L1(Ω)

+

(∫

Ω

|un(x)− u(x)|q1 dx

)1/q1(∫

Ω

|ω(x)un(x)|
q1 dx

)(q1−1)/q1

.
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In view of (3.13), we can conclude that
∫

Ω

f(x, un(x))(un(x) − u(x)) dx → 0 as n → ∞.

Thus,

(3.15)

∫

Ω

(f(x, un(x)) − f(x, u(x)))(un(x) − u(x)) dx → 0 as n → ∞.

It follows from lim
n→∞

Φ′(un) = 0 and (3.13) that

(3.16) 〈Φ′(un)− Φ′(u), un − u〉 → 0 as n → ∞.

By (3.15) and (3.16), we obtain
∫

Ω

|∇γun −∇γu|
2 dx → 0 as n → ∞.

Therefore, we conclude that un → u strongly in S2
γ,0(Ω). The proof of Lemma 3.4 is

complete. �

P r o o f of Theorem 1.1. By Lemmas 3.1, 3.2, and 3.4, all conditions of

Lemma 2.12 are satisfied. Thus, problem (1.2) has a nontrivial weak solution �

E x am p l e 3.5. Let γ = (1, 1, |x1x2|), N = 3, Ω = {x ∈ R
3 : |x| < 1}, Ñ = 5,

q1 = 3,
ω0(x) = |x|−1/50 sin(2017|x|) ∀x ∈ Ω,

ω1(x) =
(1
2
− |x|2

)2
(1− |x|2)−1 ∀x ∈ Ω,

ϕ0(t) =

{
t2(1− |t|) if |t| 6 1,

0 if |t| ∈ R \ [−1, 1],

ϕ1(t) =






0 if |t| 6 1,

t(|t| − 1) ln(1 + |t|) if |t| ∈ (1, 2],

t ln(1 + |t|) if |t| > 2,

f(x, t) = ω2
0(x)ϕ0(t) + ω2

1(x)ϕ1(t) ∀ (x, t) ∈ Ω× R.

Let ω = |ω0| + ω1, C = 1, h(x) = |x|−1/50, k(x) = −h(x) for every x in Ω. We see

that h ∈ L1(Ω) and k ∈ LÑ/2(Ω). By Examples 2.6 and 2.8, ω is in K2,3. Thus f

satisfies conditions (A1)–(A5).

We have f(x, t)/t = ω2
1(x)(|t| − 1) ln(1 + |t|) for every t ∈ [−2, 2] \ [−1, 1] and

f(x, t)/t = ω2
1(x) ln(1+ |t|) for every t ∈ R\ [−2, 2]. Thus f satisfies (A6). Therefore,

we can apply Theorem 1.1 to f with C = 1. We have that ω2 is not integrable on Ω.

Hence, the results in [2], [3], [12], [16], [17], [18], [22], [25] cannot be applied to solve

of problem (1.2) in this case.
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