[1] Balbes R., Dwinger P.:
Distributive Lattices. University of Missouri Press, Columbia, 1974.
MR 0373985 |
Zbl 0321.06012
[2] Celani S. A.:
Topological representation of distributive semilattices. Sci. Math. Jpn. 58 (2003), no. 1, 55–65.
MR 1987817 |
Zbl 1041.06002
[5] Celani S. A.:
Relative annihilator-preserving congruence relations and relative annihilator-preserving homomorphisms in bounded distributive semilattices. Open Math. 13 (2015), no. 1, 165–177.
MR 3314172
[6] Celani S., Calomino I.:
Some remarks on distributive semilattices. Comment. Math. Univ. Carolin. 54 (2013), no. 3, 407–428.
MR 3090419
[7] Chajda I., Halaš R., Kühr J.:
Semilattice Structures. Research and Exposition in Mathematics, 30, Heldermann Verlag, Lemgo, 2007.
MR 2326262
[10] Cornish W.:
Quasicomplemented lattices. Comment. Math. Univ. Carolinae 15 (1974), 501–511.
MR 0354468
[11] Grätzer G.:
General Lattice Theory. Birkhäuser Verlag, Basel, 1998.
MR 1670580
[16] Pawar Y., Mane D.:
$\alpha$-ideals in $0$-distributive semilattices and $0$-distributive lattices. Indian J. Pure Appl. Math. 24 (1993), 435–443.
MR 1234802
[17] Pawar Y. S., Khopade S. S.:
$\alpha$-ideals and annihilator ideals in $0$-distributive lattices. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 49 (2010), no. 1, 63–74.
MR 2797524
[18] Ramana Murty P. V., Ramam V.:
On filters and filter congruences in semilattices. Algebra Universalis 12 (1981), no. 3, 343–351.
DOI 10.1007/BF02483894 |
MR 0624300
[20] Varlet J. C.:
A generalization of the notion of pseudo-complementedness. Bull. Soc. Roy. Sci. Liège 37 (1968), 149–158.
MR 0228390 |
Zbl 0162.03501