Previous |  Up |  Next

Article

Keywords:
$2$-group rank; $2$-class group; imaginary triquadratic number fields
Summary:
Let $d$ be a square free integer and $L_d:=\mathbb{Q}(\zeta_{8},\sqrt{d})$. In the present work we determine all the fields $L_d$ such that the $2$-class group, $\mathrm{Cl}_2(L_d)$, of $L_d$ is of type $(2,4)$ or $(2,2,2)$.
References:
[1] Azizi A.: Sur le $2$-groupe de classes d'idéaux de $\mathbb{Q}(\sqrt d, i)$. Rend. Circ. Mat. Palermo (2) 48 (1999), no. 1, 71–92 (French. English summary). DOI 10.1007/BF02844380 | MR 1705171
[2] Azizi A.: Unités de certains corps de nombres imaginaires et abéliens sur $\mathbb{Q}$. Ann. Sci. Math. Québec 23 (1999), no. 1, 15–21 (French. English, French summary). MR 1721726
[3] Azizi A.: Sur les unités de certains corps de nombres de degré $8$ sur $\mathbb{Q}$. Ann. Sci. Math. Québec 29 (2005), no. 2, 111–129 (French. English, French summary). MR 2309703
[4] Azizi A., Chems-Eddin M. M., Zekhnini A.: On the rank of the $2$-class group of some imaginary triquadratic number fields. Rend. Circ. Mat. Palermo, II. Ser. (2021), 19 pages. MR 4175725
[5] Azizi A., Mouhib A.: Capitulation des $2$-classes d'idéaux de $\mathbb{Q}(\sqrt{2},\sqrt{d})$ o\`u $d$ est un entier naturel sans facteurs carrés. Acta. Arith. 109 (2003), no. 1, 27–63 (French). DOI 10.4064/aa109-1-2 | MR 1980850
[6] Azizi A., Taous M.: Capitulation des $2$-classes d'idéaux de $k=\mathbb{Q}(\sqrt{2p},i)$. Acta Arith. 131 (2008), no. 2, 103–123 (French). DOI 10.4064/aa131-2-1 | MR 2388046
[7] Azizi A., Taous M.: Déterminations des corps $K=\mathbb{Q}(\sqrt{d},\sqrt{-1})$ dont les $2$-groupes de classes sont de type $(2, 4)$ ou $(2, 2, 2)$. Rend. Istit. Mat. Univ. Trieste 40 (2008), 93–116 (French. English, French summary). MR 2583453
[8] Azizi A., Zekhnini A., Taous M.: On the strongly ambiguous classes of $ \mathbbm{k}/\mathbb{Q}(i)$ where $\mathbbm{k}= \mathbb{Q}(\sqrt{2 p_1 p_2},i)$. Asian-Eur. J. Math. 7 (2014), no. 1, 1450021, 26 pages. DOI 10.1142/S1793557114500211 | MR 3189588
[9] Azizi A., Zekhnini A., Taous M.: The generators of the $2$-class group of some fields $\mathbb{Q}(\sqrt{pq_1q_2},i)$: Correction to Theorem $3$ of $[5]$. IJPAM. 103 (2015), no. 1, 99–107.
[10] Azizi A., Zekhnini A., Taous M.: On the unit index of some real biquadratic number fields. Turkish J. Math. 42 (2018), no. 2, 703–715. DOI 10.3906/mat-1704-63 | MR 3794499
[11] Benjamin E., Lemmermeyer F., Snyder C.: Imaginary quadratic fields $k$ with $\mathrm{Cl}_2(k)\simeq (2,2^m)$ and rank $\mathrm{Cl}_2(k^1)=2$. Pacific J. Math. 198 (2001), no. 1, 15–31. MR 1831970
[12] Benjamin E., Lemmermeyer F., Snyder C.: Imaginary quadratic fields $k$ with $\mathrm{Cl}_2(k)\simeq (2,2,2)$. J. Number Theory 103 (2003), no. 1, 38–70. DOI 10.1016/S0022-314X(03)00084-2 | MR 2008065
[13] Benjamin E., Lemmermeyer F., Snyder C.: On the unit group of some multiquadratic number fields. Pacific J. Math. 230 (2007), no. 1, 27–40. DOI 10.2140/pjm.2007.230.27 | MR 2318446
[14] Brown E.: The class number of $Q(\sqrt{-p})$ for $P\equiv 1(\bmod 8)$ a prime. Proc. Amer. Math. Soc. 31 (1972), 381–383. DOI 10.1090/S0002-9939-1972-0289455-6 | MR 0289455
[15] Conner P. E., Hurrelbrink J.: Class Number Parity. Series in Pure Mathematics, 8, World Scientific Publishing, Singapore, 1988. MR 0963648
[16] Herglotz G.: Über einen Dirichletschen Satz. Math. Z. 12 (1922), no. 1, 255–261 (German). MR 1544516
[17] Kaplan P.: Divisibilité par $8$ du nombre des classes des corps quadratiques dont le $2$-groupe des classes est cyclique, et réciprocité biquadratique. J. Math. Soc. Japan 25 (1973), 596–608 (French). MR 0323757
[18] Kaplan P.: Sur le $2$-groupe des classes d'idéaux des corps quadratiques. J. Reine Angew. Math. 283(284) (1976), 313–363 (French). MR 0404206
[19] Kučera R.: On the parity of the class number of a biquadratic field. J. Number theory 52 (1995), no. 1, 43–52. DOI 10.1006/jnth.1995.1054 | MR 1331764
[20] Lemmermeyer F.: Ideal class groups of cyclotomic number fields. I. Acta Arith. 72 (1995), no. 4, 347–359. DOI 10.4064/aa-72-4-347-359 | MR 1348202
[21] Kuroda S.: Über die Klassenzahlen algebraischer Zahlkörper. Nagoya Math. J. 1 (1950), 1–10 (German). DOI 10.1017/S0027763000022777 | MR 0039759
[22] Lemmermeyer F.: Kuroda's class number formula. Acta Arith. 66 (1994), no. 3, 245–260. DOI 10.4064/aa-66-3-245-260 | MR 1276992
[23] Leonard P. A., Williams K. S.: On the divisibility of the class numbers of $Q(\sqrt{-p})$ and $Q(\sqrt{-2p})$ by $16$. Canad. Math. Bull. 25 (1982), no. 2, 200–206. DOI 10.4153/CMB-1982-027-0 | MR 0663614
[24] McCall T. M., Parry C. J., Ranalli R.: Imaginary bicyclic biquadratic fields with cyclic $2$-class group. J. Number Theory 53 (1995), no. 1, 88–99. DOI 10.1006/jnth.1995.1079 | MR 1344833
[25] Wada H.: On the class number and the unit group of certain algebraic number fields. J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 201–209. MR 0214565
Partner of
EuDML logo