Previous |  Up |  Next

Article

Keywords:
element order; the largest element order; prime graph; symplectic group
Summary:
We proved that the symplectic groups $\mathrm{PSp}(4,2^{n})$, where $2^{2n}+1$ is a Fermat prime number is uniquely determined by its order, the first largest element orders and the second largest element orders.
References:
[1] Ebrahimzadeh B., Iranmanesh A., Tehranian A., Parvizi Mosaed H.: A characterization of the Suzuki groups by order and the largest elements order. J. Sci. Islam. Repub. Iran 27 (2016), no. 4, 353–355. MR 3581052
[2] Gorenstein D.: Finite Groups. Chelsea Publishing Co., New York, 1980. MR 0569209 | Zbl 0695.20014
[3] He L.-G., Chen G.-Y.: A new characterization of $L_{2}(q) $ where $q=p^{n}< 125$. Ital. J. Pure Appl. Math. 28 (2011), 127–136. MR 2922488
[4] He L. G., Chen G. Y.: A new characterization of $L_{3}(q)$ $(q\leq 8)$ and $U_{3}(q)$ $(q\leq 11)$. J. Southwest China Normal Univ. 27(33) (2011), 81–87. MR 1935864
[5] He L., Chen G.: A new characterization of simple $K_{4}$-groups with type $L_{2}(p)$. Adv. Math. (China) 43 (2014), no. 5, 667–670. MR 3291316
[6] He L.-G., Chen G.-Y., Xu H.-J.: A new characterization of sporadic simple groups. Ital. J. Pure Appl. Math. 30 (2013), 373–392. MR 3066520
[7] Kantor W. M., Seress Á.: Large element orders and the characteristic of Lie-type simple groups. J. Algebra 322 (2009), no. 3, 802–832. DOI 10.1016/j.jalgebra.2009.05.004 | MR 2531224
[8] Li J., Shi W., Yu D.: A characterization of some $ PGL(2,q)$ by maximum element orders. Bull. Korean Math. Soc. 52 (2015), no. 6, 2025–2034. DOI 10.4134/BKMS.2015.52.6.2025 | MR 3432734
[9] Vasil'ev A. V., Grechkoseeva M. A., Mazurov V. D.: Characterization of finite simple groups by spectrum and order. Algebra Logika 48 (2009), no. 6, 685–728, 821, 824 (Russian. English, Russian summary); translation in Algebra Logic 48 (2009), no. 6, 385–409. MR 2640961
[10] Williams J. S.: Prime graph components of finite groups. J. Algebra 69 (1981), no. 2, 487–513. DOI 10.1016/0021-8693(81)90218-0 | MR 0617092 | Zbl 0471.20013
Partner of
EuDML logo