Previous |  Up |  Next

Article

Keywords:
monotonicity; first eigenvalue; Witten-Laplacian operator; Yamabe flow
Summary:
We construct some nondecreasing quantities associated to the first eigenvalue of $-\Delta _\phi +cR$ $(c\geq \frac 12(n-2)/(n-1))$ along the Yamabe flow, where $\Delta _\phi $ is the Witten-Laplacian operator with a $C^2$ function $\phi $. We also prove a monotonic result on the first eigenvalue of $-\Delta _\phi + \frac 14 (n/ (n-1))R$ along the Yamabe flow. Moreover, we establish some nondecreasing quantities for the first eigenvalue of $-\Delta _\phi +cR^a$ with $a\in (0,1)$ along the Yamabe flow.
References:
[1] Cao, X.: Eigenvalues of $(-\Delta+\frac{R}{2})$ on manifolds with nonnegative curvature operator. Math. Ann. 337 (2007), 435-441. DOI 10.1007/s00208-006-0043-5 | MR 2262792 | Zbl 1105.53051
[2] Cao, X.: First eigenvalues of geometric operators under the Ricci flow. Proc. Am. Math. Soc. 136 (2008), 4075-4078. DOI 10.1090/S0002-9939-08-09533-6 | MR 2425749 | Zbl 1166.58007
[3] Chow, B., Lu, P., Ni, L.: Hamilton's Ricci Flow. Graduate Studies in Mathematics 77. American Mathematical Society, Providence (2006). DOI 10.1090/gsm/077 | MR 2274812 | Zbl 1118.53001
[4] Fang, S., Xu, H., Zhu, P.: Evolution and monotonicity of eigenvalues under the Ricci flow. Sci. China, Math. 58 (2015), 1737-1744. DOI 10.1007/s11425-014-4943-7 | MR 3368179 | Zbl 1327.53084
[5] Fang, S., Yang, F.: First eigenvalues of geometric operators under the Yamabe flow. Bull. Korean Math. Soc. 53 (2016), 1113-1122. DOI 10.4134/BKMS.b150530 | MR 3534307 | Zbl 1350.53051
[6] Fang, S., Yang, F., Zhu, P.: Eigenvalues of geometric operators related to the Witten Laplacian under the Ricci flow. Glasg. Math. J. 59 (2017), 743-751. DOI 10.1017/S0017089516000537 | MR 3682011 | Zbl 1408.53088
[7] Guo, H., Philipowski, R., Thalmaier, A.: Entropy and lowest eigenvalue on evolving manifolds. Pac. J. Math. 264 (2013), 61-81. DOI 10.2140/pjm.2013.264.61 | MR 3079761 | Zbl 1275.53058
[8] Ho, P. T.: First eigenvalues of geometric operators under the Yamabe flow. Ann. Glob. Anal. Geom. 54 (2018), 449-472. DOI 10.1007/s10455-018-9608-2 | MR 3878837 | Zbl 1412.53092
[9] Kleiner, B., Lott, J.: Notes on Perelman's papers. Geom. Topol. 12 (2008), 2587-2858. DOI 10.2140/gt.2008.12.2587 | MR 2460872 | Zbl 1204.53033
[10] Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. Available at https://arxiv.org/abs/math/0211159 (2002), 39 pages. Zbl 1130.53001
[11] Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV: Analysis of Operators. Academic Press, New York (1978). MR 0493421 | Zbl 0401.47001
[12] Topping, P.: Lectures on the Ricci Flow. London Mathematical Society Lecture Note Series 325. Cambridge University Press, Cambridge (2006). DOI 10.1017/CBO9780511721465 | MR 2265040 | Zbl 1105.58013
[13] Zhao, L.: The first eigenvalue of the Laplace operator under Yamabe flow. Math. Appl. 24 (2011), 274-278. MR 2816261
[14] Zhao, L.: The first eigenvalue of the $p$-Laplace operator under powers of the $m$th mean curvature flow. Result. Math. 63 (2013), 937-948. DOI 10.1007/s00025-012-0242-1 | MR 3057347 | Zbl 1270.53089
[15] Zhao, L.: The first eigenvalue of the $p$-Laplace operator under powers of mean curvature flow. Math. Methods Appl. Sci. 37 (2014), 744-751. DOI 10.1002/mma.2835 | MR 3180635 | Zbl 1288.53068
Partner of
EuDML logo