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Abstract. We construct some nondecreasing quantities associated to the first eigenvalue
of −∆ϕ + cR (c >

1

2
(n − 2)/(n − 1)) along the Yamabe flow, where ∆ϕ is the Witten-

Laplacian operator with a C2 function ϕ. We also prove a monotonic result on the first
eigenvalue of −∆ϕ +

1

4
(n/(n − 1))R along the Yamabe flow. Moreover, we establish some

nondecreasing quantities for the first eigenvalue of −∆ϕ + cRa with a ∈ (0, 1) along the
Yamabe flow.
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1. Introduction

Eigenvalues of geometric operators are essential tools in understanding geometry

and topology of Riemannian manifolds. In 2002, Perelman in [10] introduced the

F -entropy functional and proved that it is nondecreasing along the Ricci flow coupled

to a backward heat-type equation. The nondecreasing of this functional implies the

monotonicity for the first eigenvalue of −4∆ + R along the Ricci flow. Inspired

by this work (see [10]), much efforts have been devoted to study the monotonicity

for eigenvalues of geometric operators under different geometric flows, especially the

Ricci flow and the Yamabe flow in recent years. In 2007, Cao in [1] proved that

all eigenvalues of the operator −∆ + 1
2R are nondecreasing under the Ricci flow.

Moreover, Cao in [2] showed that the first eigenvalue of general operators −∆+ cR

(c > 1
4 ) is nondecreasing under the Ricci flow and obtained the monotonicity under

the normalized Ricci flow for the case of c = 1
4 and the nonpositive average scalar

curvature. In 2018, Ho in [8] obtained that the first eigenvalue of −∆ + cR is
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nondecreasing if 0 6 c < 1
4 (n− 2)/(n− 1) and min

M
Rg(0) > (n− 2)n−1max

M
Rg(0) > 0

or if c > 1
4 (n− 2)/(n− 1) and min

M
Rg(0) > 0.

Along the Ricci flow, Fang, Yang and Zhu in [6] and Fang, Xu and Zhu in [4]

generalized Cao’s results to eigenvalues of geometric operators related to the Witten-

Laplacian operator

∆ϕ := ∆−∇∇ϕ

for some C2 function ϕ. Zhao in [13] obtained an evolution equation for the first

eigenvalue of the Laplacian operator and gave some monotonic quantities under the

Yamabe flow. Moreover, he proved that the first eigenvalue of the p-Laplace operator

is increasing and differentiable almost everywhere along the unnormalized powers of

the mth mean curvature flow (see [14]) and the unnormalized Hk-flow (see [15]).

More generally, Guo, Philipowski and Thalmaier in [7] derived an explicit formula

for the evolution of the lowest eigenvalue of the Laplace-Beltrami operator with

potential in abstract geometric flows. Considering the geometric operator −∆ϕ+
1
2R,

Fang and Yang in [5] established an evolution equation for the first eigenvalue and

constructed some monotonic quantities under the Yamabe flow.

Let (Mn, g(t)) be a Riemannian manifold with the metric g(t) that evolves under

the Yamabe flow. Motivated by the works [2], [5], [8], we consider first eigenvalues of

geometric operators related to the Witten-Laplacian operator ∆ϕ with ϕ ∈ C2(Mn).

Throughout this paper, ̺(t) and σ(t) are two solutions to the ordinate differ-

ential equation y′ = y2 with the initial values ̺(0) = max
x∈Mn

Rg(0)(x) and σ(0) =

min
x∈Mn

Rg(0)(x), respectively. The main theorems of this paper are the following.

First of all, we derive some monotonic quantities for the first eigenvalue of

−∆ϕ + cR (c > 1
4 (n− 2)/(n− 1)) under the Yamabe flow.

Theorem 1.1. Let g(t), t ∈ [0, T ), be a solution of the Yamabe flow on a closed

Riemannian manifold Mn with

(1.1) min
Mn

Rg(0) > max
{2(n− 1)

n− 2
∆ϕ, 0

}

.

Assume that λ(t) is the first eigenvalue of −∆ϕ + cR (c > 1
2 (n− 2)/(n− 1)), then

the quantity

(1.2) exp

{
∫ t

0

[

2(n− 1)c̺(τ) −
n

2
σ(τ)

]

dτ

}

λ(t)

is nondecreasing along the Yamabe flow.
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As a direct corollary of Theorem 1.1, we have:

Corollary 1.1. Let g(t), t ∈ [0, T ), be a solution of the Yamabe flow on a closed

Riemannian manifoldMn with Rg(0) > 0. Assume that λ(t) is the first eigenvalue of

−∆ϕ+ cR with c > 1
2 (n− 2)/(n− 1) and ϕ ∈ C2(Mn) is concave, then the quantity

(1.3) exp

{
∫ t

0

[

2(n− 1)c̺(τ) −
n

2
σ(τ)

]

dτ

}

λ(t)

is nondecreasing along the Yamabe flow.

In special dimensions, we have monotonicity result for the first eigenvalue of

−∆ϕ + 1
4 (n/(n− 1))R under the Yamabe flow.

Theorem 1.2. Let g(t), t ∈ [0, T ), be a solution of the Yamabe flow on a closed

Riemannian manifold Mn with n ∈ {2, 3, 4} and

(1.4) min
Mn

Rg(0) > max{(n− 1)∆ϕ, 0}.

Then the first eigenvalue of −∆ϕ+
1
4 (n/(n− 1))R is nondecreasing along the Yamabe

flow.

Moreover, we also consider monotonic quantities associated to first eigenvalues of

−∆ϕ + cRa (a 6= 1) along the Yamabe flow.

Theorem 1.3. Let g(t), t ∈ [0, T ), be a solution of the Yamabe flow on a closed

Riemannian manifold Mn with Rg(0) > 0. Assume that λ(t) is the first eigenvalue

of −∆ϕ + cRa with 0 < a < 1 and c > 1
2 (n− 2)/(n− 1). If

∆ϕ

c
6 Ra

g(t) 6 1

on [0, T1] for some T1 ∈ (0, T ). Then the quantity

exp

{
∫ t

0

[

2c(n− 1)̺a(τ) −
n

2
σ(τ)

]

dτ

}

λ(t)

is nondecreasing along the Yamabe flow on (0, T1).

Theorem 1.4. Let g(t), t ∈ [0, T ), be a solution of the Yamabe flow on a closed

Riemannian manifold Mn with Rg(0) > 0. Assume that λ(t) is the first eigenvalue

of −∆ϕ + cRa with 0 < a < 1 and c > 0. If

(1.5) max
{∆ϕ

c
, 0
}

6 Ra
g(t) 6

(2c(n− 1)

n− 2a

)a/(1−a)
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on [0, T1] for some T1 ∈ (0, T ), then the quantity

exp

{
∫ t

0

[

2c(n− 1)̺a(τ) −
n

2
σ(τ)

]

dτ

}

λ(t)

is nondecreasing along the Yamabe flow on (0, T1).

We arrange this note as follows. In Section 2, we derive an evolution equation for

the first eigenvalue of geometric operators −∆+ cR under the Yamabe flow and we

finish the proof of Theorems 1.1 and 1.2 as applications. In Section 3, we consider

the evolution of the first eigenvalue of −∆ϕ + cRa (a 6= 1) and prove Theorems 1.3

and 1.4. Under the normalized Yamabe flow, we present evolution equations and

monotonic results for first eigenvalues in Section 4.

2. First eigenvalues of −∆ϕ + cR under the Yamabe flow

Let (Mn, g(t)) be an n-dimensional closed Riemannian manifold with g(t),

t ∈ [0, T ) being a smooth solution to the Yamabe flow. Let λ(t) be an eigen-

value of the operator −∆ϕ + cR at the time t0 ∈ [0, T ) and f be the associated

eigenfunction with the normalization
∫

Mn
f2e−ϕ dV = 1, i.e.,

(2.1) −∆ϕf + cRf = λf.

Since d[
∫

Mn
f2e−ϕ dV ]/dt = 0, we obtain that

(2.2)

∫

Mn

f
[ ∂

∂t
fe−ϕ dV +

∂

∂t
(fe−ϕ dV )

]

= 0.

For any function satisfying (2.2), we define the functional

(2.3) λ(f, t) =

∫

Mn

(−∆ϕf + cRf)fe−ϕ dV.

At time t, if f is the eigenfunction of λ(t), then

λ(f, t) = λ(t).

Proceeding as in [5], we have the evolution equation for the functional λ(f, t) under

general geometric flows.

Lemma 2.1. Assume that λ(t) is the first eigenvalue of −∆ϕ + cR, f is the

eigenfunction of λ at time t0 and the metric g(t) evolves by

∂gij
∂t

= vij ,
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where vij is a symmetric 2-tensor. Then we have

(2.4)
d

dt
λ(f, t)

∣

∣

t=t0
=

∫

Mn

(

vij∇i∇jf − vij∇iϕ∇jf + c
∂R

∂t
f
)

fe−ϕ dV

+

∫

Mn

(

∇ivij −
∇itr(v)

2

)

∇jf · fe−ϕ dV.

Remark 2.1. By the eigenvalue perturbation theory, we may assume that the

first eigenvalue and first eigenfunction are C1 in time along the Yamabe flow (see [9],

[11], [12] and the references therein). Since (2.4) does not depend on the evolution

equation of f , dλ(t)/dt = dλ(f, t)/dt.

Now we are ready to prove the following evolution equation under the Yamabe

flow for the first eigenvalue of −∆ϕ + cR (c > 1
4 (n− 2)/(n− 1)).

Theorem 2.1. Let g(t), t ∈ [0, T ), be a solution of the Yamabe flow on a closed

Riemannian manifold Mn. Assume that λ(t) is the first eigenvalue of −∆ϕ + cR,

f(x, t) > 0 satisfies
∫

Mn
f2e−ϕ dV = 0 and

(2.5) −∆ϕf(x, t) + cRf(x, t) = λ(t)f(x, t).

Then along the Yamabe flow, λ(t) evolves by

(2.6)
d

dt
λ(t) = (n− 1)c

∫

Mn

Rf2
[(

2c−
n− 2

2n− 2

)

R−∆ϕ
]

e−ϕ dV

−
[

2(n− 1)c−
n

2

]

λ(t)

∫

Mn

Rf2e−ϕ dV

+
[

(n− 1)c−
n− 2

2

]

∫

Mn

R|∇f |2e−ϕ dV

+ (n− 1)c

∫

Mn

R|f∇ϕ−∇f |2e−ϕ dV.

P r o o f. Note that

(2.7)
∂R

∂t
= (n− 1)∆R+R2

under the Yamabe flow.

Substituting vij = −Rgij and (2.7) into (2.4), we obtain that

(2.8)
d

dt
λ(t) =

∫

Mn

(

−R∆ϕf + cf
∂R

∂t

)

fe−ϕ dV +
n− 2

2

∫

Mn

f∇∇fRe−ϕ dV

= −

∫

Mn

Rf∆ϕfe
−ϕ dV + (n− 1)c

∫

Mn

∆Rf2e−ϕ dV

+ c

∫

Mn

R2f2e−ϕ dV +
n− 2

2

∫

Mn

f∇∇fRe−ϕ dV.
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Integrating by parts, we get

(2.9)

∫

Mn

f∇∇fRe−ϕ dV = −

∫

Mn

Rf∆ϕfe
−ϕ dV −

∫

Mn

R|∇f |2e−ϕ dV

and

(2.10)

∫

Mn

f2∆Re−ϕ dV = − 2

∫

Mn

f∇∇fRe−ϕ dV +

∫

Mn

f2∇∇ϕRe−ϕ dV

= 2

∫

Mn

Rf∆ϕfe
−ϕ dV + 2

∫

Mn

R|∇f |2e−ϕ dV

+

∫

Mn

Rf2|∇ϕ|2e−ϕ dV −

∫

Mn

f2R∆ϕe−ϕ dV

− 2

∫

Mn

fR〈∇ϕ,∇f〉e−ϕ dV

= 2

∫

Mn

Rf∆ϕfe
−ϕ dV +

∫

Mn

R|∇f |2e−ϕ dV

+

∫

Mn

R|f∇ϕ−∇f |2e−ϕ −

∫

Mn

f2R∆ϕe−ϕ dV.

Plugging (2.9) and (2.10) into (2.8), we have

d

dt
λ(t) = −

n

2

∫

Mn

Rf∆ϕfe
−ϕ dV + 2(n− 1)c

∫

Mn

Rf∆ϕfe
−ϕ dV

+
[

(n− 1)c−
n− 2

2

]

∫

Mn

R|∇f |2e−ϕ dV

+ (n− 1)c

∫

Mn

R|f∇ϕ−∇f |2e−ϕ dV

− (n− 1)c

∫

Mn

f2R∆ϕe−ϕ dV + c

∫

Mn

R2f2e−ϕ dV

=
[

2(n− 1)c−
n

2

]

∫

Mn

Rf2(cR − λ)e−ϕ dV

+
[

(n− 1)c−
n− 2

2

]

∫

Mn

R|∇f |2e−ϕ dV

+ (n− 1)c

∫

Mn

R|f∇ϕ−∇f |2e−ϕ dV + c

∫

Mn

R2f2e−ϕ dV

− (n− 1)c

∫

Mn

f2R∆ϕe−ϕ dV

= (n− 1)c

∫

Mn

Rf2
[(

2c−
n− 2

2n− 2

)

R−∆ϕ
]

e−ϕ dV

−
[

2(n− 1)c−
n

2

]

λ(t)

∫

Mn

Rf2e−ϕ dV
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+
[

(n− 1)c−
n− 2

2

]

∫

Mn

R|∇f |2e−ϕ dV

+ (n− 1)c

∫

Mn

R|f∇ϕ−∇f |2e−ϕ dV,

where we used (2.5) in the second equality. �

As we obtained Theorem 2.1, we are ready to finish the proof of Theorems 1.1

and 1.2.

P r o o f of Theorem 1.1. As in [5], by applying the maximum principle to (2.7),

we get

(2.11) Rg(t) 6 ̺(t) =

(

1

max
Mn

Rg(0)
− t

)−1

and

(2.12) Rg(t) > σ(t) =

(

1

min
Mn

Rg(0)
− t

)−1

.

In particular, we have

(2.13) Rg(t) > min
Mn

Rg(0).

Since c > 1
2 (n− 2)/(n− 1) and min

Mn

Rg(0) > max{2((n− 1)/(n− 2))∆ϕ, 0}, we

have

(2.14) cRg(t)f
2
[(

2c−
n− 2

2n− 2

)

Rg(t) −∆ϕ
]

> 0

and

(2.15)
[

(n− 1)c−
n− 2

2

]

Rg(t) > 0.

Therefore, we can derive from Theorem 2.1 that

(2.16)
d

dt
λ(t) > −

[

2(n−1)c−
n

2

]

λ(t)

∫

Mn

Rf2e−ϕ dV >

[n

2
σ(t)−2(n−1)c̺(t)

]

λ(t).

Therefore, we have

(2.17)
d

dt
exp

{
∫ t

0

[

2(n− 1)c̺(τ) −
n

2
σ(τ)

]

dτ

}

λ(t)

= exp

{
∫ t

0

[

2(n− 1)c̺(τ)−
n

2
σ(τ)

]

dτ

}

×
{ d

dt
λ(t)−

[n

2
σ(t)− 2(n− 1)c̺(t)

]

λ(t)
}

> 0.

This proves the theorem. �
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P r o o f of Theorem 1.2. Assume λ(t) is the first eigenvalue of−∆ϕ+
1
4 (n/(n− 1))

in this proof. Note that Rg(t) > min
Mn

Rg(0) by (2.12).

Substituting c = 1
4 (n/(n− 1)) into (2.6), we get

(2.18)
d

dt
λ(t) =

n

4

∫

Mn

Rf2
[ R

n− 1
−∆ϕ

]

e−ϕ dV +
4− n

4

∫

Mn

R|∇f |2e−ϕ dV

+
n

4

∫

Mn

R|f∇ϕ−∇f |2e−ϕ dV > 0

if n ∈ {2, 3, 4} and R > max{(n− 1)∆ϕ, 0}.

We conclude that λ(t) is nondecreasing under the Yamabe flow. �

3. First eigenvalues of −∆ϕ + cRa (a 6= 1) under the Yamabe flow

It is not hard to derive the following evolution equation for the functional λ(f, t)

under general geometric flows.

Lemma 3.1. Assume that λ(t) is the first eigenvalue of −∆ϕ + cRa (a 6= 1), f is

the eigenfunction of λ at time t1 and the metric g(t) evolves by

∂gij
∂t

= vij ,

where vij is a symmetric 2-tensor. Then we have

(3.1)
d

dt
λ(f, t)

∣

∣

t=t1
=

∫

Mn

(

vij∇i∇jf − vij∇iϕ∇jf + acRa−1 ∂R

∂t
f
)

fe−ϕ dV

+

∫

Mn

(

∇ivij −
∇itr(v)

2

)

∇jf · fe−ϕ dV.

Remark 3.1. Since (3.1) does not depend on the evolution equation of f ,

dλ(t)/dt = dλ(f, t)/dt.

Now we are ready to prove the evolution equation under the Yamabe flow for the

first eigenvalue of −∆ϕ + cRa (0 < a < 1).

Theorem 3.1. Let g(t), t ∈ [0, T ), be a solution of the Yamabe flow on a closed

Riemannian manifold Mn. Assume that λ(t) is the first eigenvalue of −∆ϕ + cRa

(a 6= 1), f(x, t) > 0 satisfies
∫

Mn
f2e−ϕ dV = 0 and

(3.2) −∆ϕf(x, t) + cRaf(x, t) = λ(t)f(x, t).
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Then along the Yamabe flow, λ(t) evolves by

(3.3)
d

dt
λ(t) = λ(t)

∫

Mn

[n

2
R− 2c(n− 1)Ra

]

f2e−ϕ dV

+

∫

Mn

[

2c(n− 1)Ra −
n− 2a

2
R− (n− 1)∆ϕ

]

cRaf2e−ϕ dV

+

∫

Mn

[

c(n− 1)Ra−1 −
n− 2

2

]

R|∇f |2e−ϕ dV

+ a(1− a)c(n− 1)

∫

Mn

Ra−2|∇R|2f2e−ϕ dV

+ c(n− 1)

∫

Mn

Ra|∇f − f∇ϕ|2e−ϕ dV.

P r o o f. Note that the scalar curvature R evolves under the Yamabe flow by

(3.4)
∂R

∂t
= (n− 1)∆R+R2.

Substituting vij = −Rgij and (3.4) into (3.1), we obtain that

(3.5)
d

dt
λ(t) =

∫

Mn

(

−R∆ϕf + acRa−1f
∂R

∂t

)

fe−ϕ dV

+
n− 2

2

∫

Mn

f∇∇fRe−ϕ dV

= −

∫

Mn

Rf∆ϕfe
−ϕ dV + ac(n− 1)

∫

Mn

f2Ra−1∆Re−ϕ dV

+ ac

∫

Mn

Ra+1f2e−ϕ dV +
n− 2

2

∫

Mn

f∇∇fRe−ϕ dV.

Integrating by parts, we have

(3.6)

∫

Mn

f2Ra−1∆Re−ϕ dV = − 2

∫

Mn

fRa−1∇∇fRe−ϕ dV

+ (1− a)

∫

Mn

Ra−2|∇R|2f2e−ϕ dV

+

∫

Mn

f2Ra−1∇∇ϕRe−ϕ dV

and
∫

Mn

fRa−1∇∇fRe−ϕ dV = (1− a)

∫

Mn

fRa−1∇∇fRe−ϕ dV

−

∫

Mn

Raf∆ϕfe
−ϕ dV

−

∫

Mn

Ra|∇f |2e−ϕ dV,
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that is

(3.7)

∫

Mn

fRa−1∇∇fRe−ϕ dV = −
1

a

∫

Mn

Raf∆ϕfe
−ϕdV −

1

a

∫

Mn

Ra|∇f |2e−ϕ dV.

In particular, we get

(3.8)

∫

Mn

f∇∇fRe−ϕ dV = −

∫

Mn

Rf∆ϕfe
−ϕ dV −

∫

Mn

R|∇f |2e−ϕ dV.

Moreover, we have

∫

Mn

f2Ra−1∇∇ϕRe−ϕ dV

= −

∫

Mn

f2Ra∆ϕe−ϕ dV + (1 − a)

∫

Mn

f2Ra−1∇∇ϕRe−ϕ dV

− 2

∫

Mn

fRa∇∇ϕfe
−ϕ dV +

∫

Mn

f2Ra|∇ϕ|2e−ϕ dV,

that is

(3.9)

∫

Mn

f2Ra−1∇∇ϕRe−ϕ dV

= −
1

a

∫

Mn

f2Ra∆ϕe−ϕdV −
2

a

∫

Mn

fRa∇∇ϕfe
−ϕ dV

+
1

a

∫

Mn

f2Ra|∇ϕ|2e−ϕ dV.

Applying (3.7) and (3.9) to (3.6), we obtain

(3.10)

∫

Mn

f2Ra−1∆Re−ϕ dV

=
2

a

∫

Mn

Raf∆ϕfe
−ϕ dV +

2

a

∫

Mn

Ra|∇f |2e−ϕ dV

+ (1− a)

∫

Mn

Ra−2|∇R|2f2e−ϕ dV −
1

a

∫

Mn

f2Ra∆ϕe−ϕ dV

−
2

a

∫

Mn

fRa∇∇ϕfe
−ϕ dV +

1

a

∫

Mn

f2Ra|∇ϕ|2e−ϕ dV

=
2

a

∫

Mn

Raf∆ϕfe
−ϕ dV +

1

a

∫

Mn

Ra|∇f |2e−ϕ dV

+ (1− a)

∫

Mn

Ra−2|∇R|2f2e−ϕ dV −
1

a

∫

Mn

f2Ra∆ϕe−ϕ dV

+
1

a

∫

Mn

Ra|∇f − f∇ϕ|2e−ϕ dV.

396



Plugging (3.8) and (3.10) into (3.5), we obtain

(3.11)
d

dt
λ(t) = −

∫

Mn

Rf∆ϕfe
−ϕ dV + 2c(n− 1)

∫

Mn

Raf∆ϕfe
−ϕ dV

+ c(n− 1)

∫

Mn

Ra|∇f |2e−ϕ dV

+ a(1− a)c(n− 1)

∫

Mn

Ra−2|∇R|2f2e−ϕ dV

− c(n− 1)

∫

Mn

f2Ra∆ϕe−ϕ dV

+ c(n− 1)

∫

Mn

Ra|∇f − f∇ϕ|2e−ϕ dV + ac

∫

Mn

Ra+1f2e−ϕ dV

−
n− 2

2

∫

Mn

Rf∆ϕfe
−ϕ dV −

n− 2

2

∫

Mn

R|∇f |2e−ϕ dV.

Now (3.3) follows immediately by applying (3.2) to (3.11) and rearranging. �

As we obtained Theorem 3.1, we are ready to finish the proof of Theorems 1.3

and 1.4.

P r o o f of Theorem 1.3. Since 0 < a < 1, c > 1
2 (n− 2)/(n− 1) and (2.13), it is

easy to verify from condition (1.5) that

Rg(t) > 0,(3.12)

c(n− 1)Ra−1
g(t) −

n− 2

2
> 0,(3.13)

2c(n− 1)Ra
g(t) −

n− 2a

2
R− (n− 1)∆ϕ > 0.(3.14)

Therefore, we can derive the following inequality from Theorem 3.1, (2.11)

and (2.12).

(3.15)
d

dt
λ(t) > λ(t)

∫

Mn

[n

2
Rg(t) − 2c(n− 1)Ra

g(t)

]

f2(t) dV

>

[n

2
σ(t) − 2c(n− 1)̺a(t)

]

λ(t).

Moreover, we have

(3.16)
d

dt
exp

{
∫ t

0

[

2c(n− 1)̺a(τ) −
n

2
σ(τ)

]

dτ

}

λ(t)

= exp

{
∫ t

0

[

2c(n− 1)̺a(τ) −
n

2
σ(τ)

]

dτ

}

×
{ d

dt
λ(t)−

[n

2
σ(t) − 2c(n− 1)̺a(t)

]

λ(t)
}

> 0.

This completes the proof of this theorem. �

397



P r o o f of Theorem 1.4. Since 0 < a < 1, c > 0 and (2.13) holds, it is easy

to verify from condition (1.6) that the inequalities (3.12) to (3.14) still apply. We

conclude this theorem by the rest arguments as in the proof of Theorem 1.3. �

4. Results under the normalized Yamabe flow

In this section, we consider an evolution equation of−∆ϕ+cR (c> 1
4 (n−2)/(n−1))

and −∆ϕ + cRa (0 < a < 1 and c > 0) under the normalized Yamabe flow of

(4.1)
∂

∂t
gij = −(R− r)gij ,

where r =
∫

Mn
R dV/

∫

Mn
dV is the average scalar curvature.

Note that the evolution formula for the scalar curvature (see, e.g., [3]) is

(4.2)
∂

∂t
R = (n− 1)∆R+R(R− r).

By similar arguments as in the proof of Theorem 2.1, we can obtain the following

result.

Theorem 4.1. Let g(t), t ∈ [0,∞), be a solution of the normalized Yamabe flow

on a closed Riemannian manifold Mn. Assume that λ(t) is the first eigenvalue of

−∆ϕ + cR, f(x, t) > 0 satisfies
∫

Mn
f2e−ϕ dV = 0 and

(4.3) −∆ϕf(x, t) + cRf(x, t) = λ(t)f(x, t).

Then along the normalized Yamabe flow, λ(t) evolves by

(4.4)
d

dt
λ(t) = (n− 1)c

∫

Mn

Rf2
[(

2c−
n− 2

2n− 2

)

R−∆ϕ
]

e−ϕ dV

+
[

(n− 1)c−
n− 2

2

]

∫

Mn

R|∇f |2e−ϕ dV

+ (n− 1)c

∫

Mn

R|f∇ϕ−∇f |2e−ϕ dV

−
[

2(n− 1)c−
n

2

]

λ(t)

∫

Mn

Rf2e−ϕ dV − rλ(t).
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As we obtained (4.4), the similar argument as in the proof of Theorem 1.1 implies:

Theorem 4.2. Let g(t), t ∈ [0,∞), be a solution of the Yamabe flow on a closed

Riemannian manifold Mn with Rg(t) > max{2((n− 1)/(n− 2))∆ϕ, 0}. Assume

that λ(t) is the first eigenvalue of−∆ϕ+cR (c > 1
2 (n− 2)/(n− 1)), then the quantity

exp

{
∫ t

0

[

r + 2(n− 1)c̺(τ)−
n

2
σ(τ)

]

dτ

}

λ(t)

is nondecreasing along the normalized Yamabe flow.

In particular, we can show a monotonicity quantity associated to the first eigen-

value of −∆ϕ + 1
4 (n/(n− 1))R.

Theorem 4.3. Let g(t), t ∈ [0,∞), be a solution of the normalized Yamabe flow

on a closed Riemannian manifold with n ∈ {2, 3, 4} and Rg(t) > max{(n− 1)∆ϕ, 0}.

Assume that λ(t) is the first eigenvalue of −∆ϕ + 1
4 (n/(n− 1))R, then ertλ(t) is

nondecreasing along the normalized Yamabe flow.

P r o o f. Substituting c = 1
4 (n/(n− 1)) into (4.4), we have

(4.5)
d

dt
λ(t) =

n

4

∫

Mn

Rf2
[( 1

n− 1

)

R−∆ϕ
]

e−ϕ dV +
4− n

4

∫

Mn

R|∇f |2e−ϕ dV

+
n

4

∫

Mn

R|f∇ϕ−∇f |2e−ϕ dV − rλ(t) > −rλ(t)

if n ∈ {2, 3, 4}, R > max{(n− 1)∆ϕ, 0}.

Therefore, we get

d

dt
(ertλ(t)) = ert

( d

dt
λ(t) + rλ(t)

)

> 0.

This completes the proof. �

Consider an evolution equation of −∆ϕ + cRa (0 < a < 1 and c > 0) under the

normalized Yamabe flow. By similar arguments as in the proof of Theorem 3.1, we

obtain the following evolution equation.

Theorem 4.4. Let g(t), t ∈ [0,∞), be a solution of the normalized Yamabe flow

on a closed Riemannian manifold Mn. Assume that λ(t) is the first eigenvalue of

−∆ϕ + cRa (a 6= 1), f(x, t) > 0 satisfies
∫

Mn
f2e−ϕ dV = 0 and

(4.6) −∆ϕf(x, t) + cRaf(x, t) = λ(t)f(x, t).
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Then along the Yamabe flow, λ(t) evolves by

(4.7)
d

dt
λ(t) = λ(t)

∫

Mn

[n

2
R− 2c(n− 1)Ra

]

f2e−ϕ dV

+

∫

Mn

[

2c(n− 1)Ra −
n− 2a

2
R− (n− 1)∆ϕ

]

cRaf2e−ϕ dV

+

∫

Mn

[

c(n− 1)Ra−1 −
n− 2

2

]

R|∇f |2e−ϕ dV

+ a(1− a)c(n− 1)

∫

Mn

Ra−2|∇R|2f2e−ϕ dV

+ c(n− 1)

∫

Mn

Ra|∇f − f∇ϕ|2e−ϕ dV

+ (1− a)cr

∫

Mn

Raf2e−ϕ dV − rλ(t).

Similarly, we can derive a monotonic quantity on the first eigenvalue of −∆ϕ+cRa

with 0 < a < 1 and c > 0.

Theorem 4.5. Let g(t), t ∈ [0,∞), be a solution of the normalized Yamabe flow

on a closed Riemannian manifold Mn with Rg(0) > 0. Assume that λ(t) is the first

eigenvalue of −∆ϕ + cRa with 0 < a < 1 and c > 0. If

(4.8) max
{∆ϕ

c
, 0
}

6 Ra
g(t) 6

(2c(n− 1)

n− 2a

)a/(1−a)

on [0, T2] for some T2 ∈ (0,∞), then the quantity

exp

{
∫ t

0

[

r + 2c(n− 1)̺a(τ)−
n

2
σ(τ)

]

dτ

}

λ(t)

is nondecreasing along the normalized Yamabe flow on (0, T2).

P r o o f. From 0 < a < 1, c > 0 and Ra > 0, we know that

(4.9) (1− a)cr

∫

Mn

Raf2e−ϕ dV > 0.

Since 0 < a < 1 and c > 0 and (2.13) applies, it is easy to verify from condi-

tion (4.8) that (3.12) to (3.14) still hold.

Applying (2.11), (2.12), (3.12), (3.13), (3.14) and (4.9) to Theorem 4.4, we get

(4.10)
d

dt
λ(t) > λ(t)

∫

Mn

[n

2
Rg(t) − 2c(n− 1)Ra

g(t)

]

f2(t) dV − rλ(t)

>

[n

2
σ(t) − 2c(n− 1)̺a(t)− r

]

λ(t).
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Moreover, we have

(4.11)
d

dt
exp

{
∫ t

0

[

r + 2c(n− 1)̺a(τ) −
n

2
σ(τ)

]

dτ

}

λ(t)

= exp

{
∫ t

0

[

r + 2c(n− 1)̺a(τ)−
n

2
σ(τ)

]

dτ

}

×
{ d

dt
λ(t) +

[

r + 2c(n− 1)̺a(t)−
n

2
σ(t)

]

λ(t)
}

> 0.

This completes the proof. �
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