Previous |  Up |  Next

Article

Keywords:
generalized Fock-Bargmann-Hartogs domain; holomorphic automorphism group
Summary:
We study a class of typical Hartogs domains which is called a generalized Fock-Bargmann-Hartogs domain $D_{n,m}^{p}(\mu )$. The generalized Fock-Bargmann-Hartogs domain is defined by inequality ${\rm e}^{\mu \|z\|^{2}}\sum _{j=1}^{m}|\omega _{j}|^{2p}<1$, where $(z,\omega )\in \mathbb {C}^n\times \mathbb {C}^m$. In this paper, we will establish a rigidity of its holomorphic automorphism group. Our results imply that a holomorphic self-mapping of the generalized Fock-Bargmann-Hartogs domain $D_{n,m}^{p}(\mu )$ becomes a holomorphic automorphism if and only if it keeps the function $\sum _{j=1}^{m}|\omega _{j}|^{2p}{\rm e}^{\mu \|z\|^{2}}$ invariant.
References:
[1] Ahn, H., Byun, J., Park, J.-D.: Automorphisms of the Hartogs type domains over classical symmetric domains. Int. J. Math. 23 (2012), Aticle ID 1250098, 11 pages. DOI 10.1142/S0129167X1250098X | MR 2959444 | Zbl 1248.32001
[2] Bi, E., Feng, Z., Tu, Z.: Balanced metrics on the Fock-Bargmann-Hartogs domains. Ann. Global Anal. Geom. 49 (2016), 349-359. DOI 10.1007/s10455-016-9495-3 | MR 3510521 | Zbl 1355.32004
[3] Bi, E., Tu, Z.: Rigidity of proper holomorphic mappings between generalized Fock-Bargmann-Hartogs domains. Pac. J. Math. 297 (2018), 277-297. DOI 10.2140/pjm.2018.297.277 | MR 3893429 | Zbl 1410.32001
[4] Dini, G., Primicerio, A. Selvaggi: Localization principle of automorphisms on generalized pseudoellipsoids. J. Geom. Anal. 7 (1997), 575-584. DOI 10.1007/BF02921633 | MR 1669231 | Zbl 0943.32006
[5] Ishi, H., Kai, C.: The representative domain of a homogeneous bounded domain. Kyushu J. Math. 64 (2010), 35-47. DOI 10.2206/kyushujm.64.35 | MR 2662658 | Zbl 1195.32009
[6] Kim, H., Ninh, V. T., Yamamori, A.: The automorphism group of a certain unbounded non-hyperbolic domain. J. Math. Anal. Appl. 409 (2014), 637-642. DOI 10.1016/j.jmaa.2013.07.007 | MR 3103183 | Zbl 1307.32017
[7] Kodama, A.: On the holomorphic automorphism group of a generalized complex ellipsoid. Complex Var. Elliptic Equ. 59 (2014), 1342-1349. DOI 10.1080/17476933.2013.845177 | MR 3210305 | Zbl 1300.32001
[8] Tu, Z.-H.: Rigidity of proper holomorphic mappings between equidimensional bounded symmetric domains. Proc. Am. Math. Soc. 130 (2002), 1035-1042. DOI 10.1090/S0002-9939-01-06383-3 | MR 1873777 | Zbl 0999.32007
[9] Tu, Z., Wang, L.: Rigidity of proper holomorphic mappings between certain unbounded non-hyperbolic domains. J. Math. Anal. Appl. 419 (2014), 703-714. DOI 10.1016/j.jmaa.2014.04.073 | MR 3225398 | Zbl 1293.32002
Partner of
EuDML logo