Keywords:
Ramsey number; tree; Turán's problem
Summary:
Let $r(G_1, G_2)$ be the Ramsey number of the two graphs $G_1$ and $G_2$. For $n_1\ge n_2\ge 1$ let $S(n_1,n_2)$ be the double star given by $V(S(n_1,n_2))=\{v_0,v_1,\ldots ,v_{n_1},w_0$, $w_1,\ldots ,w_{n_2}\}$ and $E(S(n_1,n_2))=\{v_0v_1,\ldots ,v_0v_{n_1},v_0w_0, w_0w_1,\ldots ,w_0w_{n_2}\}$. We determine $r(K_{1,m-1},$ $S(n_1,n_2))$ under certain conditions. For $n\ge 6$ let $T_n^3=S(n-5,3)$, $T_n''=(V,E_2)$ and $T_n''' =(V,E_3)$, where $V=\{v_0,v_1,\ldots ,v_{n-1}\}$, $E_2=\{v_0v_1,\ldots ,v_0v_{n-4},v_1v_{n-3}$, $v_1v_{n-2}, v_2v_{n-1}\}$ and $E_3=\{v_0v_1,\ldots , v_0v_{n-4},v_1v_{n-3},$ $v_2v_{n-2},v_3v_{n-1}\}$. We also obtain explicit formulas for $r(K_{1,m-1},T_n)$, $r(T_m',T_n)$ $(n\ge m+3)$, $r(T_n,T_n)$, $r(T_n',T_n)$ and $r(P_n,T_n)$, where $T_n\in \{T_n'',T_n''',T_n^3\}$, $P_n$ is the path on $n$ vertices and $T_n'$ is the unique tree with $n$ vertices and maximal degree $n-2$.
References:
[1] Burr, S. A., Erdős, P.:
Extremal Ramsey theory for graphs. Util. Math. 9 (1976), 247-258.
MR 0429622 |
Zbl 0333.05119
[2] Chartrand, G., Lesniak, L.:
Graphs and Digraphs. Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, Monterey (1986).
DOI 10.1201/b19731 |
MR 0834583 |
Zbl 0666.05001
[8] Radziszowski, S. P.:
Small Ramsey numbers. Electron. J. Comb. 2017 (2017), Article ID DS1, 104 pages.
DOI 10.37236/21 |
MR 1670625
[11] Sun, Z.-H., Wang, L.-L.:
Turán's problem for trees. J. Comb. Number Theory 3 (2011), 51-69.
MR 2908182 |
Zbl 1247.05117