Previous |  Up |  Next

Article

Keywords:
Bergman space; Carleson measure; Toeplitz operator; Schatten classes
Summary:
We study Carleson measures and Toeplitz operators on the class of so-called small weighted Bergman spaces, introduced recently by Seip. A characterization of Carleson measures is obtained which extends Seip's results from the unit disk of $\mathbb {C}$ to the unit ball of $\mathbb {C}^n$. We use this characterization to give necessary and sufficient conditions for the boundedness and compactness of Toeplitz operators. Finally, we study the Schatten $p$ classes membership of Toeplitz operators for $1<p<\infty $.
References:
[1] Arroussi, H., Park, I., Pau, J.: Schatten class Toeplitz operators acting on large weighted Bergman spaces. Stud. Math. 229 (2015), 203-221. DOI 10.4064/sm8345-12-2015 | MR 3454300 | Zbl 1344.30050
[2] Carleson, L.: An interpolation problem for bounded analytic functions. Am. J. Math. 80 (1958), 921-930. DOI 10.2307/2372840 | MR 117349 | Zbl 0085.06504
[3] Carleson, L.: Interpolations by bounded analytic functions and the corona problem. Ann. Math. 76 (1962), 547-559. DOI 10.2307/1970375 | MR 0141789 | Zbl 0112.29702
[4] Hastings, W. W.: A Carleson measure theorem for Bergman spaces. Proc. Am. Math. Soc. 52 (1975), 237-241. DOI 10.1090/S0002-9939-1975-0374886-9 | MR 0374886 | Zbl 0296.31009
[5] Lin, P., Rochberg, R.: Trace ideal criteria for Toeplitz and Hankel operators on the weighted Bergman spaces with exponential type weights. Pac. J. Math. 173 (1996), 127-146. DOI 10.2140/pjm.1996.173.127 | MR 1387794 | Zbl 0853.47015
[6] Luecking, D.: A technique for characterizing Carleson measures on Bergman spaces. Proc. Am. Math. Soc. 87 (1983), 656-660. DOI 10.1090/S0002-9939-1983-0687635-6 | MR 0687635 | Zbl 0521.32005
[7] Luecking, D.: Trace ideal criteria for Toeplitz operators. J. Func. Anal. 73 (1987), 345-368. DOI 10.1016/0022-1236(87)90072-3 | MR 0899655 | Zbl 0618.47018
[8] Pau, J., Zhao, R.: Carleson measures and Toeplitz operators for weighted Bergman spaces on the unit ball. Mich. Math. J. 64 (2015), 759-796. DOI 10.1307/mmj/1447878031 | MR 3426615 | Zbl 1333.32007
[9] Peláez, J. Á., Rättyä, J.: Weighted Bergman spaces induced by rapidly increasing weights. Mem. Am. Math. Soc. 227 (2014), 124 pages. DOI 10.1090/memo/1066 | MR 3155774 | Zbl 1308.30001
[10] Peláez, J. Á., Rättyä, J.: Embedding theorems for Bergman spaces via harmonic analysis. Math. Ann. 362 (2015), 205-239. DOI 10.1007/s00208-014-1108-5 | MR 3343875 | Zbl 1333.46032
[11] Peláez, J. Á., Rättyä, J.: Trace class criteria for Toeplitz and composition operators on small Bergman spaces. Adv. Math. 293 (2016), 606-643. DOI 10.1016/j.aim.2016.02.017 | MR 3474330 | Zbl 1359.47025
[12] Peláez, J. Á., Rättyä, J., Sierra, K.: Berezin transform and Toeplitz operators on Bergman spaces induced by regular weights. J. Geom. Anal. 28 (2018), 656-687. DOI 10.1007/s12220-017-9837-9 | MR 3745876 | Zbl 06859122
[13] Seip, K.: Interpolation and sampling in small Bergman spaces. Collect. Math. 64 (2013), 61-72. DOI 10.1007/s13348-011-0054-8 | MR 3016633 | Zbl 1266.30020
[14] Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics 226, Springer, New York (2005). DOI 10.1007/0-387-27539-8 | MR 2115155 | Zbl 1067.32005
[15] Zhu, K.: Operator Theory in Function Spaces. Mathematical Surveys and Monographs 138, American Mathematical Society, Providence (2007). DOI 10.1090/surv/138 | MR 2311536 | Zbl 1123.47001
Partner of
EuDML logo