Previous |  Up |  Next

Article

Keywords:
intersection graph; leaf; nonsimple group; characterization
Summary:
For a finite group $G$, $\Gamma (G)$, the intersection graph of $G$, is a simple graph whose vertices are all nontrivial proper subgroups of $G$ and two distinct vertices $H$ and $K$ are adjacent when $H\cap K\neq 1$. In this paper, we classify all finite nonsimple groups whose intersection graphs have a leaf and also we discuss the characterizability of them using their intersection graphs.
References:
[1] Akbari, S., Heydari, F., Maghasedi, M.: The intersection graph of a group. J. Algebra Appl. 14 (2015), Article ID 1550065, 9 pages. DOI 10.1142/S0219498815500656 | MR 3323326 | Zbl 1309.05090
[2] Csákány, B., Pollák, G.: The graph of subgroups of a finite group. Czech. Math. J. 19 (1969), 241-247 Russian. DOI 10.21136/CMJ.1969.100891 | MR 0249328 | Zbl 0218.20019
[3] Glasby, S. P., Pálfy, P. P., Schneider, C.: $p$-groups with a unique proper non-trivial characteristic subgroup. J. Algebra 348 (2011), 85-109. DOI 10.1016/j.jalgebra.2011.10.005 | MR 2852233 | Zbl 1252.20014
[4] Kayacan, S.: $K_{3,3}$-free intersection graphs of finite groups. Commun. Algebra 45 (2017), 2466-2477. DOI 10.1080/00927872.2016.1233209 | MR 3594532 | Zbl 1388.20035
[5] Kayacan, S., Yaraneri, E.: Abelian groups with isomorphic intersection graphs. Acta Math. Hung. 146 (2015), 107-127. DOI 10.1007/s10474-015-0486-9 | MR 3348183 | Zbl 1374.20047
[6] Kayacan, S., Yaraneri, E.: Finite groups whose intersection graphs are planar. J. Korean Math. Soc. 52 (2015), 81-96. DOI 10.4134/JKMS.2015.52.1.081 | MR 3299371 | Zbl 1314.20016
[7] Shahsavari, H., Khosravi, B.: On the intersection graph of a finite group. Czech. Math. J. 67 (2017), 1145-1153. DOI 10.21136/CMJ.2017.0446-16 | MR 3736024 | Zbl 06819578
[8] Shahsavari, H., Khosravi, B.: Characterization of some families of simple groups by their intersection graphs. Commun. Algebra 48 (2020), 1266-1280. DOI 10.1080/00927872.2019.1682151 | MR 4079532 | Zbl 1435.05104
[9] Shen, R.: Intersection graphs of subgroups of finite groups. Czech. Math. J. 60 (2010), 945-950. DOI 10.1007/s10587-010-0085-4 | MR 2738958 | Zbl 1208.20022
[10] Taunt, D. R.: Finite groups having unique proper characteristic subgroups. I. Proc. Camb. Philos. Soc. 51 (1955), 25-36. DOI 10.1017/S0305004100029881 | MR 0067886 | Zbl 0064.02402
[11] Zelinka, B.: Intersection graphs of finite Abelian groups. Czech. Math. J. 25 (1975), 171-174. DOI 10.21136/CMJ.1975.101307 | MR 0372075 | Zbl 0311.05119
Partner of
EuDML logo