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Abstract. For a finite group G, Γ(G), the intersection graph of G, is a simple graph
whose vertices are all nontrivial proper subgroups of G and two distinct vertices H and K

are adjacent when H ∩K 6= 1. In this paper, we classify all finite nonsimple groups whose
intersection graphs have a leaf and also we discuss the characterizability of them using their
intersection graphs.
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1. Introduction

Throughout this paper all graphs are finite, undirected, with no loops and no

multiple edges. The vertex set and the edge set of a graph Γ are denoted by V (Γ)

and E(Γ), respectively. A complete graph is a graph in which all vertices are adjacent

and a null graph is a graph with no edges. For a vertex v, deg(v) is the number

of vertices adjacent to v and is called the degree of v. A vertex of degree 1 is

called a leaf. By nl(Γ), we denote the number of leaves of a graph Γ. A path

between two distinct vertices u, v ∈ V (Γ), is defined as a sequence of distinct vertices

u = v0, v1, . . . , vn = v such that {vi, vi+1} ∈ E(Γ) for 0 6 i 6 n− 1, and n is called

the length of this path. The length of a shortest path between two distinct vertices u

and v is called the distance between them and is denoted by d(u, v). In case there

is no path connecting u and v, we define d(u, v) to be infinite. A connected graph

is a graph in which there exists a path between each two distinct vertices. For

a vertex v ∈ V (Γ), the neighbourhood of v is denoted by N(v) and is defined as

N(v) = {u ∈ V (Γ): {u, v} ∈ E(Γ)}. If S is a nonempty subset of V (Γ), then the

neighbourhood of S is defined as N(S) =
⋃

v∈S

N(v). We say two vertices u and v
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are coneighbour when N(u) \ {v} = N(v) \ {u}. By this definition, two nonadjacent

leaves are coneighbour when they are both adjacent to a vertex v0.

For a finite group G, the intersection graph of G, denoted by Γ(G), is an undi-

rected graph whose vertex set consists of all nontrivial proper subgroups of G and

two distinct vertices H and K are adjacent when H ∩ K 6= 1. Csákány and Pol-

lák in [2] introduced the intersection graph of a finite group. Later, some authors

determined finite groups with disconnected intersection graphs, see [9], K3,3-free

intersection graphs, see [4], planar intersection graphs, see [6] and triangle-free inter-

section graphs, see [1]. Also the intersection graphs of abelian groups are discussed

in [5] and [11]. The authors in [7] classified all finite groups with regular intersection

graphs. Recently the authors in [8] classified all finite simple groups whose inter-

section graphs have a leaf and as a consequence, it is proved that these groups are

uniquely determined by their intersection graphs. We say a finite group G is charac-

terizable by its intersection graph when Γ(G) ∼= Γ(H) implies that G ∼= H for a finite

group H .

In this paper, we first classify all finite nonsimple groups with at least a leaf in

their intersection graphs. Then for a finite nonsimple group G with a leaf in Γ(G),

we show that in some cases G is characterizable by intersection graph and also in

other cases we discuss the structure of G.

Throughout this paper, for a finite group G and a nontrivial proper subgroup H

of G, by vH we mean the corresponding vertex in Γ(G). For two finite groups H

andK byH⋉K we mean a semidirect product ofH andK, whereH acts nontrivially

on K. For a prime p, by Zn
p we denote the elementary abelian group of order p

n.

Also by Dn we mean the dihedral group of order n for an even number n. For

a group G and two nontrivial proper subgroups L and M of G, we say M is an

overgroup for L when L < M . Finally for two coprime integers a > b > 0 and

a natural number n, a prime p is called a primitive prime divisor or briefly a PPD

of an − bn when p |(an − bn) and p ∤(ak − bk) for each 0 < k < n. In the case b = 1,

we sometimes write ordp(a) = n.

2. Preliminary results

In this section, we state some lemmas which are necessary in the proofs of our

main results.

Lemma 2.1 ([9], Theorem). A finite group with a disconnected intersection graph

is Zp × Zq, where both p, q are primes, or a Frobenius group whose complement is

a prime order group and the kernel is a minimal normal subgroup.

192



Lemma 2.2. LetG be a Frobenius group isomorphic to Zp⋉Zn
q , where a subgroup

of order p acts irreducibly on the kernel. Then p is a PPD of qn − 1.

P r o o f. Let X be a generator of Zp, acting as X ∈ Aut(Zn
q ) = GL(n, q). Then

saying that X acts irreducibly is the same as saying the characteristic polynomial

gX(t) = det(tI −X) is an irreducible factor of tp − 1 ∈ Fq[t]. Let K be the splitting

field of gX(t) over Fq. ThusK = Fq(ζ), where ζ is a primitive root, and ζ
p = 1. Then

the Galois group of K over Fq is cyclic, generated by the Frobenius automorphism

σ(a) = aq, where a ∈ Fq. If p divides q
r − 1, then σr(ζ) = ζ. Also

h(t) =
r
∏

i=1

(

t− σi(ζ)
)

is a member of Fq[t], because σ permutes the terms, and is a factor of

gX(t) =

n
∏

i=1

(

t− σi(ζ)
)

.

This contradicts the irreducibility of gX(t). �

Using the above results, we investigate the structure of finite groups with discon-

nected intersection graphs:

Corollary 2.3. Let G be a finite group. Then the intersection graph of G is

disconnected if and only if G is isomorphic to one of the following groups:

(1) Zp × Zq for some primes p and q (not necessarily distinct),

(2) Zp ⋉ Zn
q for some distinct primes p and q, where p is a PPD of qn − 1.

P r o o f. It is obvious that the groups in (1) and (2) have disconnected intersection

graphs. Conversely suppose that Γ(G) is disconnected. If G is an abelian group,

then by Lemma 2.1 we get the result. So suppose that G is a nonabelian group. Then

by Lemma 2.1, G ∼= HN , where N is a minimal normal subgroup of G and H is the

complement of N of some prime order, say p. Let q be a prime such that q | |N |.

Obviously q 6= p. We know that every minimal normal subgroup ofG is an elementary

abelian group or a direct product of some isomorphic nonabelian simple groups.

Since N has a fixed-point-free automorphism of prime order, N is a nilpotent group

and so N is an elementary abelian q-subgroup of G. Now by Lemma 2.2, we get the

result. �

Corollary 2.4. Let G be a finite group whose intersection graph is disconnected.

Then every connected component of Γ(G) is an isolated vertex except possibly a con-

nected component with at least four vertices.
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Corollary 2.5. Let G be a finite group and Γ(G) its intersection graph. Then

Γ(G) contains an isolated vertex if and only if G is one of the following groups:

(1) Zp2 for some prime p,

(2) Zp × Zq for some primes p and q (not necessarily distinct),

(3) Zp ⋉ Zn
q for some distinct primes p and q, where p is a PPD of qn − 1.

P r o o f. Suppose that Γ(G) contains an isolated vertex, say vL, for some non-

trivial proper subgroup L. If |V (Γ(G))| = 1, then L is the only nontrivial proper

subgroup of G and so G ∼= Zp2 for some prime p. If |V (Γ(G))| > 1, then Γ(G) is

disconnected and by Corollary 2.3, we get the result. The converse is obvious. �

Lemma 2.6. Let G be a finite group.

(a) If L is a nontrivial proper subgroup of G such that in the intersection graph

of G we have (N(vL) \ {vH}) $ (N(vH) \ {vL}) for each vertex vH adjacent

to vL, then L is a minimal subgroup of G.

(b) If L is a minimal subgroup of G, then (N(vL) \ {vH}) ⊆ (N(vH) \ {vL}) for

each subgroup H of G, where H ∩ L 6= 1.

P r o o f. (a) LetK 6= 1 be a subgroup of L. ThenK∩S 6= 1 implies that L∩S 6= 1

for each subgroup S of G and hence (N(vK)\{vL}) ⊆ (N(vL)\{vK}), which implies

that K = L and so L is a minimal subgroup of G.

(b) If vT ∈ N(vL) \ {vH}, then L ⊆ T and hence T ∩ H 6= 1. So we get the

result. �

Example 2.7. Consider the intersection graph of Z18 = 〈a | a18 = 1〉 (see Fig-

ure 1).

v〈a9〉v〈a3〉

v〈a2〉

v〈a6〉

Figure 1. Γ(Z18).

Although 〈a6〉 is a minimal subgroup of Z18, obviously N(v〈a6〉) \ {v〈a2〉} =

N(v〈a2〉) \ {v〈a6〉} and so the converse of (a) in the above lemma is not true in gen-

eral. Also note that N(v〈a2〉)\{v〈a6〉} = N(v〈a6〉)\{v〈a2〉} and (N(v〈a2〉)\{v〈a3〉}) ⊆

(N(v〈a3〉) \ {v〈a2〉}), while 〈a2〉 is not a minimal subgroup of Z18. Therefore the

converse of (b) is not valid in general.
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Lemma 2.8. Let G be a finite group. Then Γ(G) contains a leaf if and only if

one of the following cases occurs:

(i) if G has only two nontrivial subgroups, then G ∼= Zp3 for some prime p,

(ii) if G has more than two nontrivial proper subgroups, then G contains a mini-

mal subgroup, say L, such that L is contained properly in exactly one proper

subgroup of G.

P r o o f. Suppose that Γ(G) contains a leaf, say vL, which is adjacent to a unique

vertex, say vML
, for some subgroups L and ML of G, respectively. If vML

is a leaf

too, then {vL, vML
} is a connected component of Γ(G). So by Corollary 2.4, Γ(G)

is connected and hence L and ML are the only nontrivial proper subgroups of G,

which implies that G ∼= Zp3 for some prime p. If vML
is adjacent to some vertex

other than vL, then (N(vL) \ {vML
}) $ (N(vML

) \ {vL}). Now using Lemma 2.6 (a),

we see that L is a minimal subgroup of G. Moreover,ML is the only overgroup of L.

So we get the result. The converse is obvious by Lemma 2.6 (b). �

Remark 2.9. Following the notation we used in the proof of Lemma 2.8, in the

sequel of this paper when the intersection graph of a finite group G contains a leaf,

we use vL and vML
for a leaf of Γ(G) and the unique vertex adjacent to this leaf,

respectively. Then L ∼= Zp is a minimal subgroup of G, ML is a maximal subgroup

of G and ML is the only overgroup of L.

Lemma 2.10. Let G be a finite group with at least three nontrivial proper sub-

groups and let vL be a leaf of Γ(G), where L ∼= Zp for some prime p. Then ML is

one of the following groups:

(1) If ML is a p-group, then ML
∼= Zp × Zp.

(2) If ML is an abelian non-p-group, then ML
∼= Zp × Zq for some prime q, where

q 6= p.

(3) IfML is a nonabelian group and L 5 ML, thenML
∼= Zp⋉Zn

q for some prime q,

where p is a PPD of qn − 1.

(4) IfML is a nonabelian group and L E ML, thenML
∼= Zq⋉Zp for some prime q,

where q |(p− 1).

P r o o f. By Remark 2.9, ML is the only overgroup of L. So vL is an isolated

vertex of Γ(ML). We claim that Γ(ML) is disconnected. If Γ(ML) is connected, then

|V (Γ(ML))| = 1. So by Corollary 2.5, ML
∼= Zp2 . If vML

is a leaf of Γ(G), then by

the proof of Lemma 2.8, G ∼= Zp3 , which is a contradiction. So vML
is adjacent to at

least one vertex other than vL, say vH , for some nontrivial proper subgroup H of G.

SinceML∩H 6= 1,ML∩H contains a minimal subgroup of G. But the only minimal

subgroup of ML
∼= Zp2 is L and therefore L 6 H , a contradiction. Thus Γ(ML) is

disconnected. Now by Corollary 2.3, we get the result. �
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3. Main results

In the following theorem, we determine all finite groups whose intersection graphs

have at least one leaf.

Theorem 3.1. Let G be a finite group with at least three nontrivial proper sub-

groups such that Γ(G) has a leaf. Then one of the following cases occurs:

(a) If G is a p-group, then G ∼= Z2×Z4, D8 or G ∼= Zp×Zp2 ,Zp⋉Zp2 ,Zp⋉(Zp×Zp)

for some odd prime p.

(b) If G is not a p-group, then there exist distinct prime divisors p and q of |G| such

that G is isomorphic to one of the following groups:

(1) Zp × Zq2 ,

(2) Zq2 ⋉ Zp, where q |(p− 1),

(3) Zq ⋉ (Zp × Zp), where q is a PPD of p
2 − 1,

(4) Zp ⋉N , where N is an extra special q-group with Φ(N) ∼= Zq and a sub-

group of order p acts irreducibly on N/Φ(N),

(5) Zp ⋉N , where N is a q-group of order q2n with a unique nontrivial proper

characteristic subgroup Φ(N) ∼= Zn
q and a subgroup of order p acts irre-

ducibly on N/Φ(N),

(6) a finite nonabelian simple group in which there exist a minimal subgroup,

say L, and a maximal subgroup, say ML, such that ML is the only over-

group of L in G.

P r o o f. Let vL be a leaf of Γ(G). We consider two cases:

Case (a): Let G be a p-group. Clearly we get that |G| = p3.

(i) First suppose that G is an abelian p-group. Since Γ(G) has at least three

vertices, so G ≇ Zp3 . Also it can be easily verified that the elementary abelian group

of order p3 has no leaf. Let G = 〈a, b : ap
2

= bp = 1, ab = ba〉 ∼= Zp ×Zp2 . Obviously

Φ(G) = 〈ap〉 and it can be easily verified that the structures of nontrivial proper

subgroups of G and the number of subgroups isomorphic to each structure are as

follows:

⊲ p maximal subgroups Hi = 〈bia〉 ∼= Zp2 , where 1 6 i 6 p,

⊲ one maximal subgroup M = 〈ap, b〉 ∼= Zp × Zp,

⊲ p+ 1 minimal subgroups Φ(G) = 〈ap〉 and Li = 〈baip〉 ∼= Zp, where 1 6 i 6 p.

Note that for each i 6= j, we have Hi ∩Hj = Φ(G). Also M is the only overgroup

of Li, where 1 6 i 6 p. So each vLi
is a leaf of Γ(G) for 1 6 i 6 p and therefore

nl(Γ(G)) = p. In this case all leaves are coneighbour (see Figure 2).
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vΦ(G)

vM

vH1

vH2

vH3

vHp−1

vHp

vL1

vL2

vLp

Figure 2. Γ(Zp × Zp2).

(ii) Now suppose that G is a nonabelian p-group. If p = 2, then G ∼= D8, since

Γ(Q8) has no leaf. So G = 〈a, b : a4 = b2 = 1, bab = a−1〉. In this case, Φ(D8) = 〈a2〉

and obviously vΦ(D8) is not a leaf. So each vertex correspondent to any minimal

subgroup other than Φ(D8) is a leaf of Γ(D8). ThusML
∼= Z2×Z2 and nl(Γ(D8)) = 4

(see Figure 3).

vΦ(D8)

v〈a〉

v〈a2,b〉 v〈a2,ab〉

v〈b〉

v〈a2b〉

v〈ab〉

v〈a3b〉

Figure 3. Γ(D8).

If p > 2, then there are two nonabelian groups of order p3 which are isomorphic

to Zp ⋉ Zp2 and Zp ⋉ (Zp × Zp).

Let G = 〈a, b : ap
2

= bp = 1, b−1ab = ap+1〉, which is isomorphic to Zp⋉Zp2 . Then

Φ(G) = Z(G) = 〈ap〉 and it can be easily verified that (biaj)m = bmia(m(m−1)ip/2+m)j

for 1 6 i 6 p, 1 6 j 6 p2 and m > 1. So o(bia) = p2 and o(biap) = p for 1 6 i 6 p.

Then nontrivial proper subgroups of G are as follows:

⊲ p maximal subgroups Hi = 〈bia〉 ∼= Zp2 , where 1 6 i 6 p,

⊲ one maximal subgroup M = 〈ap, b〉 ∼= Zp × Zp,

⊲ p+ 1 minimal subgroups Φ(G) = 〈ap〉 and Li = 〈biap〉 ∼= Zp, where 1 6 i 6 p.

It can be easily verified that for each 1 6 i 6 p, M is the only overgroup of Li

in G. Also Hi ∩ Hj = Φ(G) for each i 6= j and so nl(Γ(G)) = p. By the above

discussion, we see that Γ(G) is isomorphic to Γ(Zp × Zp2) (see Figure 2).
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Now let G = 〈a, b, c : ap = bp = cp = 1, ab = ba, ac = ca, c−1bc = ab〉 ∼=

Zp ⋉ (Zp × Zp). Then Z(G) = 〈a〉 and it can be easily verified that (bicj)n =

a(−n(n−1)ij/2)bnicnj. Hence every element x ∈ G can be uniquely presented in

the form x = ambnct, where 1 6 m,n, t 6 p. Let H1 = 〈a, b〉, H2 = 〈a, bc〉,

H3 = 〈a, b2c〉, . . . , Hp = 〈a, bp−1c〉 and Hp+1 = 〈a, c〉. We claim that Hi ∩Hj = 〈a〉

for each i 6= j. If x ∈ H1 ∩Hj , where 2 6 j 6 p+ 1, then x = ambn = as(bj−1c)t for

some integers 0 6 m,n, s, t 6 p−1. So ambn = asa(−t(t−1)(j−1)/2)bt(j−1)ct and hence

as−t(t−1)(j−1)/2−mbt(j−1)−nct = 1. Therefore we get that t = n = 0 and m = s. This

shows that x ∈ 〈a〉. If x ∈ Hi ∩ Hj , where 2 6 i < j 6 p + 1, then similarly we

get the result. So the maximal subgroups of G are H1, . . . , Hp+1 and all of them

are isomorphic to Zp × Zp. Thus every minimal subgroup of G, other than Z(G),

is contained properly in only one maximal subgroup of G. We know that each Hi,

where 1 6 i 6 p+ 1, has p+ 1 minimal subgroups. Let Lij , where 1 6 j 6 p, be the

minimal subgroups of Hi other than Z(G). Then vLij
is a leaf of Γ(G) for each i, j.

By the above discussion, nontrivial proper subgroups of G are as follows:

⊲ p+ 1 maximal subgroups H1, . . . , Hp+1, isomorphic to Zp × Zp,

⊲ the minimal subgroup Z(G) ∼= Zp,

⊲ p(p+ 1) minimal subgroups Lij
∼= Zp, where 1 6 i 6 p+ 1 and 1 6 j 6 p.

So nl(Γ(G)) = p(p + 1) and each leaf belongs to a set of p coneighbour vertices

(see Figure 4).

vZ(G)

vH1

vH2

vH3

vH4

vHp

vp+1

vL11

vL12

vL1p

vL(p+1)1

vL(p+1)2

vL(p+1)p

vL2p

vL22

vL21

vL4p

vL42

vL41

vL31

vL32

vL3p

Figure 4. Γ(Zp ⋉ (Zp × Zp)).

Case (b): Suppose that G is not a p-group. We consider two subcases:

(i) Let L be a normal subgroup of G. By assumption ML is the only overgroup

of L in G. So the quotient group G/L contains a unique nontrivial proper subgroup

ML/L, which implies that G/L ∼= Zq2 for some prime q. Since G is not a p-group,
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we get that q 6= p. Thus G is a split extension of L ∼= Zp by a Sylow q-subgroup

isomorphic to Zq2 .

If G is an abelian group, then G ∼= Zp × Zq2 and hence G = 〈a, b : ap = bq
2

= 1,

ab = ba〉. So nontrivial proper subgroups of G are L = 〈a〉, ML = 〈a, bq〉, H = 〈b〉

and K = 〈bq〉. Thus in this case we have nl(Γ(G)) = 1 (see Figure 5).

vL

vML

vH vK

Figure 5. Γ(Zp × Zq2).

If G is a nonabelian group, then G ∼= Zq2 ⋉ Zp, where q |(p − 1). We note that

if q2 ∤(p− 1), then there exists only one finite group of the form Zq2 ⋉ Zp, while for

q2 |(p− 1), there exist two nonisomorphic nonabelian groups of the form Zq2 ⋉ Zp.

Let q2 ∤(p− 1). Then

G1 = 〈a, b : ap = bq
2

= 1, b−1ab = ar, ordp(r) = q〉.

It can be easily verified that abq = bqa and a−ib−1ai = ai(r−1)b−1 for 1 6 i 6 p. So

Z(G1) = 〈bq〉 and nontrivial proper subgroups of G1 are as follows:

⊲ p maximal subgroups Hi = 〈ai(r−1)b−1〉 ∼= Zq2 , where 1 6 i 6 p,

⊲ the minimal subgroup Z(G1) = 〈bq〉 ∼= Zq,

⊲ the minimal subgroup L = 〈a〉 ∼= Zp,

⊲ the maximal subgroup ML = 〈a, bq〉 ∼= Zpq.

Note that the maximal subgroup ML is the only overgroup of L in G1. So vL is

a leaf of Γ(G1) adjacent to vML
. Also for each i 6= j we have Hi ∩ Hj = Z(G1).

Therefore nl(Γ(G1)) = 1 (see Figure 6). As an example for this case, we can give the

dicyclic group of order 12 isomorphic to Z4 ⋉ Z3.

Now let q2 |(p − 1). In this case, in addition to the above structure, there exists

another finite group of the form Zq2 ⋉ Zp, which is presented as

G2 = 〈a, b : ap = bq
2

= 1, b−1ab = ar, ordp(r) = q2〉.

Note that in this case the subgroup of order pq is not isomorphic to Zpq, since

abq 6= bqa. Also we have a−ib−qai = ai(r
q−1)b−q for 1 6 i 6 p. Thus nontrivial

proper subgroups of G2 are as follows:

⊲ p maximal subgroups Hi = 〈ai(r−1)b−1〉 ∼= Zq2 , where 1 6 i 6 p,

⊲ p minimal subgroups Ki = 〈ai(r
q−1)b−q〉 ∼= Zq, where 1 6 i 6 p,
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vZ(G)

vML

vH1

vH2

vH3

vHp−1

vHp

vL

Figure 6. Γ(G1).

⊲ one minimal subgroup L = 〈a〉 ∼= Zp,

⊲ one maximal subgroup ML = 〈a, bq〉 ∼= Zq ⋉ Zp.

Similarly to the above ML is the only overgroup of L in G2. Also Hi ∩ML = Ki

for 1 6 i 6 p. Therefore, nl(Γ(G2)) = 1 (see Figure 7). As an example for this case

we can give GA1(5) = Sz(2) ∼= Z4 ⋉ Z5.

vML

vH1

vK1

vH2

vK2

vKp

vHp

vKp−1

vHp−1

vL

Figure 7. Γ(G2).

(ii) Suppose that L is not a normal subgroup of G. We consider two subcases:

Suppose that ML is a normal subgroup of G. Then [G : ML] = r for some prime r.

Using the possible structures of ML which are recorded in Lemma 2.10, we consider

four cases to determine the structure of G:

(1) If ML
∼= Zp × Zp, then obviously r 6= p, since G is not a p-group. In this case

we have G ∼= Zr×(Zp×Zp) or G ∼= Zr⋉(Zp×Zp). If G ∼= Zr×(Zp×Zp), then every

subgroup of order p lies in a subgroup of G isomorphic to Zpr, too. Hence vL is not

a leaf of Γ(G), which is a contradiction. So G ∼= Zr ⋉ (Zp × Zp), where r |(p
2 − 1)

and by Lemma 2.2, r ∤(p− 1), since there exists no subgroup of order pr. Therefore

r 6= 2 and r |(p+ 1). Then nontrivial proper subgroups of G are as follows:

⊲ one maximal subgroup M ∼= Zp × Zp,
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⊲ p+ 1 minimal subgroups Li
∼= Zp, where 1 6 i 6 p+ 1,

⊲ p2 minimal subgroups Kj
∼= Zr, where 1 6 j 6 p2.

In this case all leaves are coneighbours, Γ(G) is disconnected and nl(Γ(G)) = p+1

(see Figure 8). Note that A4 is an example for this case.

vM

vL1

vL2

vL3

vL4

vLp

vLp+1

. . .

vK1vK2vK3vK
p2

Figure 8. Γ(Zr ⋉ (Zp × Zp)), where r is a PPD of p
2 − 1.

(2) If ML
∼= Zp × Zq, then L ∼= Zp is a normal subgroup of G, a contradiction.

(3) IfML
∼= Zp⋉Zn

q , then we claim that this case implies a contradiction. If r = p,

then L lies in a Sylow p-subgroup of G of order p2, a contradiction. Thus r 6= p.

Note that in this case L 5 ML and so NG(L) = L. Also ML E G and ML contains

L ∼= Zp. So every Sylow p-subgroup of G is contained in ML. But the number of

Sylow p-subgroups of ML is [ML : L] = qn, while the number of Sylow p-subgroups

of G is [G : L] = rqn, which is clearly a contradiction.

(4) If ML
∼= Zq ⋉ Zp, then L ∼= Zp is a normal subgroup of G, a contradiction.

Suppose that ML is not a normal subgroup of G. Then NG(ML) = ML. Again we

check each possible structure for ML, by Lemma 2.10.

(1) IfML
∼= Zp×Zp, thenML is a Sylow p-subgroup ofG. AlsoML = Z(NG(ML)).

Now by Burnside’s normal p-complement theorem we see that there exists a proper

normal subgroup of G, say N , such that (|N |, p) = 1 and hence |G| = p2|N |. But this

implies that NL is a proper subgroup of G and obviouslyNL 6= ML, a contradiction.

(2) If ML
∼= Zp × Zq, then L ∼= Zp is a Sylow p-subgroup of G. Since L 6

Z(NG(L)) = ML, G has a normal p-complement subgroup, say N . Obviously q | |N |.

We claim that N is a q-group. On the contrary suppose that for some prime r other

than q we have r | |N |. Let R be a Sylow r-subgroup of G. If R E G, then RL is

a proper subgroup of G which contains properly L, a contradiction. So R 5 G. Since

R 6 N and N E G, so every Sylow r-subgroup of G is contained in N and hence

[G : NG(R)] = [N : NN (R)]. Obviously p ∤[N : NN(R)] and therfore p ∤[G : NG(R)].

But this implies that p | |NG(R)| and so there exists a supgroup L2
∼= Zp such that

L2 6 NG(R). Thus RL2 is a proper subgroup of G. Since Sylow p-subgroups of G
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are conjugate in G, so for some element g we have L 6 g−1RL2g, a contradiction. So

we get that |N | = qn and N is the Sylow q-subgroup of G. We claim that N is not

a minimal normal subgroup of G, since otherwise L acts irreducibly on N and hence

there is no proper subgroup of G containing properly L, which is a contradiction.

So N has at least one nontrivial proper characteristic subgroup. It can be easily ver-

ified that Φ(N) is the only nontrivial proper characteristic subgroup of N , otherwise

the subgroup L is contained properly in more than one subgroup of G, which is a con-

tradiction. Moreover |Φ(N)| = q, since ML
∼= Zp × Zq. So N is the cyclic group of

order q2 or an extra special q-group. If N ∼= Zq2 , then let a and b be some generators

of N and L, respectively. Then b−1ab = ar, where (r, q) = 1. Since ML is an abelian

subgroup, we have aqb = baq and hence q2 |(rq − q) or equivalently q |(r − 1). So

r = tq+1 for some t > 0. Note that if t ≡ 0 (mod q), then G is an abelian group and

hence ML E G, a contradiction. Moreover q2 |(rp − 1), since a = b−pabp = ar
p

. But

rp = (tq)p+p(tq)p−1+ . . .+ptq+1, which implies that q2 | ptq, a contradiction. So N

is an extra special q-group. Moreover L acts irreducibly on N/Φ(N) and hence p is

a PPD of qn−1 − 1, by Lemma 2.2. In this case nl(Γ(G)) = [G : ML] = qn−1. As an

example for this case, we consider SL2(3) ∼= Z3 ⋉ Q8, where L ∼= Z3, N ∼= Q8 and

ML
∼= Z6. Let a be an element of SL2(3) of order 3 and let {i, j, k} be the generators

of N ∼= Q8. Then nontrivial proper subgroups of SL2(3) are as follows:

⊲ the maximal subgroup N ∼= Q8,

⊲ the maximal subg three cyclic subgroups 〈i〉, 〈j〉, 〈k〉, isomorphic to Z4,

⊲ the minimal subgroup Φ(N) = Z(SL2(3)) ∼= Z2,

⊲ four cyclic subgroups L1 = 〈a〉, L2 = 〈ai〉, L3 = 〈aj〉, L4 = 〈ak〉, isomorphic to Z3,

⊲ four maximal subgroups ML1
= 〈a,Φ(N)〉, ML2

= 〈ai,Φ(N)〉, ML3
= 〈aj ,Φ(N)〉,

ML4
= 〈ak,Φ(N)〉, isomorphic to Z6.

vΦ(N)

vN

vML1

v〈i〉

vML2

v〈j〉

vML3

v〈k〉

vML4

vL1

vL2vL3

vL4

Figure 9. Γ(SL2(3)).

(3) If ML
∼= Zp ⋉ Zn

q , then L ∼= Zp is a Sylow p-subgroup of G and similarly to

Case (2), we get that G ∼= LN , where N is a q-group with a unique nontrivial proper
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characteristic subgroup Φ(N) ∼= Zn
q and |N | = qm, where m > n > 1. Hence N is

an UCS q-group (groups with a unique nontrivial characteristic subgroup are called

UCS groups and are well-studied in [3], [10]). By Lemma 2.2, p is a PPD of qn − 1.

Also we get that L acts irreducibly on N/Φ(N) and hence p is a PPD of qm−n − 1.

So n = m− n or equivalently 2n = m. It can be easily verified that vML
is adjacent

to qn leaves. Also each leaf is in correspondence with a subgroup of order p. In

this case nl(Γ(G)) = [G : L] = q2n and each leaf belongs to a set of qn coneighbour

vertices. As an examples for this case, we consider D18 (see Figure 10). It can be

easily verified that nontrivial proper subgroups of D18 are as follows:

⊲ one maximal subgroup N ∼= Z9,

⊲ one minimal subgroup Φ(N) = Φ(G) ∼= Z3,

⊲ nine minimal subgroups Lij
∼= Z2, where 1 6 i, j 6 3,

⊲ three maximal subgroups MLi
∼= S3, where 1 6 i 6 3.

vML2

vML1

vN
vΦ(N)

vML3

vL22

vL23
vL21

vL11

vL13

vL12

vL33

vL31

vL32

Figure 10. Γ(D18).

The above example shows that N is not necessarily a special q-group.

(4) Finally suppose thatML
∼= Zq⋉Zp. Then L ∼= Zp is a Sylow p-subgroup of G.

We claim that G is a simple group. On the contrary suppose that G is not simple

and let N be a minimal normal subgroup of G. Obviously LN is a subgroup of G

containing properly L. Thus LN = ML or LN = G. If LN = ML, then N ∼= Zq and

hence ML
∼= Zpq, a contradiction. Thus LN = G. Obviously p ∤ |N |. If a prime r

other than q divides |N |, then N contains all Sylow r-subgroups of G. Let R be

a Sylow r-subgroup of G. Then [G : NG(R)] = [N : NN(R)], which implies that

p | |NG(R)| and therefore there exits a subgroup of G of order p|R|, a contradiction.

So N is an elementary abelian q-group and therefore L acts irreducibly on N , which

implies that there is no proper subgroup of G containing properly L, a contradiction.
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So we get the result. We note that in this case nl(Γ(G)) > [G : ML] > 3 (A5 is an

example for this case with L ∼= Z5 and ML
∼= D10). �

Before passing to further results, it is very useful to summarize the results in the

proof of Theorem 3.1. Let G be a finite nonsimple group such that Γ(G) has more

than two vertices and Γ(G) has a leaf. Then the structures of G and nl(Γ(G)) are as

recorded in the following table:

number of leaves connectivity

# the structure of G nl(Γ(G)) in each set of of Γ(G)

coneighbour

leaves

1 D8 4 2 connected

2 Zp × Zp2 , p prime p p connected

3 Zp ⋉ Zp2 , p odd prime p p connected

4 Zp ⋉ (Zp × Zp), p odd prime p(p+ 1) p connected

5 Zp × Zq2 , p and q distinct 1 1 connected

primes

6 Zq2 ⋉ Zp, p and q primes, 1 1 connected

q |(p− 1) and the subgroup

of order pq is cyclic

7 Zq2 ⋉ Zp, p and q primes, 1 1 connected

q2 |(p− 1) and the subgroup

of order pq is not cyclic

8 Zq ⋉ (Zp × Zp), p prime p+ 1 p+ 1 disconnected

and q is a PPD of p2 − 1

9 Zp ⋉N , N is an extra special qn−1 1 connected

q-group of order qn and

a subgroup of order p acts

irreducibly on N/Φ(N)

10 Zp ⋉N , N is a UCS q-group q2n qn connected

of order q2n with Φ(N) ∼= Zn
q

and a subgroup of order p

acts irreducibly on N/Φ(N)

Table 1. Finite nonsimple groups G whose Γ(G) has a leaf.

In the sequel we state some definitions and lemmas which give a criterion for the

simplicity of a finite group, when its intersection graph has a leaf.

Definition 3.2. In a simple graph Γ, a vertex v ∈ V (Γ) is called an ω-vertex

of Γ when (N(v) \ {v′}) ⊆ (N(v′) \ {v}) for each v′ ∈ N(v).
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Remark 3.3. If L is a minimal subgroup of G, then by Lemma 2.6 (b), vL is an

ω-vertex of Γ(G). We note that the converse is not true in general.

Definition 3.4. Let Γ be a simple graph and S be a clique of Γ which contains

an ω-vertex. Then S is called a maximal ω-set, when:

(1) for each pair of distinct vertices u, v ∈ S, u and v are coneighbour,

(2) if v ∈ N(S) \ S, then N(v) contains at least one vertex, say z, such that z /∈ S.

Obviously each vertex in a maximal ω-set is an ω-vertex. Also if v ∈ N(S) \ S,

then v is adjacent to all vertices in S. It can be easily verified that each ω-vertex

belongs to a unique maximal ω-set.

There are many graphs which have some maximal ω-sets. For example in every

null graph Γ, S = {v} is a maximal ω-set of Γ for each v ∈ V (Γ). Also for every

complete graph Γ, S = V (Γ) is the only maximal ω-set of Γ. As an example in

the intersection graphs of finite groups, see Figure 7, where {vL} and {vHi
, vKi

},

1 6 i 6 p, are the maximal ω-sets of Γ(G2).

In the next lemma we get that maximal ω-sets play a key role in the study of

intersection graphs of finite groups.

Lemma 3.5. Let G be a finite group and Γ(G) be its intersection graph.

(a) For each minimal subgroup L of G,

SL = {vK : L is the only minimal subgroup of K}

is the maximal ω-set of Γ(G) containing vL.

(b) In every maximal ω-set of Γ(G) there exists exactly one vertex vL such that L

is a minimal subgroup of G.

(c) vH is an ω-vertex if and only if H has a unique minimal subgroup.

P r o o f. (a) By Remark 3.3, vL is an ω-vertex of Γ(G) and obviously vL ∈ SL.

Since L is the only minimal subgroup ofK for each vK ∈ SL, we get that SL is a clique

of Γ(G) and all vertices in SL are coneighbour. Finally if vU ∈ N(SL) \ SL, then U

contains at least two minimal subgroups and hence N(vK) \ {vU} $ N(vU ) \ {vK}

for each vertex vK ∈ SL. Therefore SL is a maximal ω-set of Γ(G).

(b) Suppose that S is a maximal ω-set of Γ(G) and let vH ∈ S. If L is a minimal

subgroup of H , then (N(vL) \ {vH}) ⊆ (N(vH) \ {vL}) and hence vL ∈ S. But

by (a), SL is the unique ω-set of Γ(G) containing vL, which implies that S = SL.

Therefore L is the only minimal subgroup of H .

(c) Let vH be an ω-vertex of Γ(G) and L a minimal subgroup of H . If H has

a minimal subgroup, say L1, other than L, thenN(vL1
)\{vH} $ N(vH)\{vL1

}, which

is obviously a contradiction. So L is the only minimal subgroup of H . Conversely,
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if H is a subgroup of G containing a unique minimal subgroup L, then vH ∈ SL and

hence vH is an ω-vertex of Γ(G). �

Corollary 3.6. The number of minimal subgroups of a finite group G is equal to

the number of maximal ω-sets of Γ(G).

Theorem 3.7. Let Γ(G), the intersection graph of G, be connected and have

a leaf. Then G is a nonabelian simple group if and only if for every ω-vertex of Γ(G),

say vH , there exists an ω-vertex, say vK , such that d(vH , vK) > 3.

P r o o f. Let G be a finite nonabelian simple group and vH an ω-vertex of Γ(G).

Then by Lemma 3.5 (c), H has a unique minimal subgroup L and hence vH and vL
are coneighbour. So for each nontrivial proper subgroup K of G, where K 6= {L,H},

we have d(vH , vK) = d(vL, vK).

Let vL1
be a leaf of Γ(G), which is adjacent to vML1

. Since G is simple,

CoreG(ML1
) = 1. Therefore there exists g ∈ G such that vL is not adjacent

to v(ML1
)g . Hence d(vL, vLg

1
) > 3.

For the converse, on the contrary suppose that G is not a simple group. Then G is

one of the groups listed in Table 1, where its intersection graph is connected. Then

we can easily verify that in each case there exists at least one minimal subgroup,

say L, such that d(vL, vK) = 2 for each minimal subgroup K of G, a contradiction.

So G is a simple group and we get the result. �

Corollary 3.8. Let G1 be a finite group whose intersection graph has a leaf and

let G2 be a finite group such that Γ(G1) ∼= Γ(G2). Then G1 is a simple group if and

only if G2 is simple.

P r o o f. By Lemma 2.1, the simplicity of a group implies that its intersection

graph is connected. Now let ϕ be a graph isomorphism from Γ(G1) to Γ(G2). It can

be easily verified that vH is an ω-vertex of Γ(G1) if and only if ϕ(vH) is an ω-vertex

of Γ(G2) for each subgroup H of G1. Also for each pair of distinct subgroups H

and K of G1, obviously d(vH , vK) = d(ϕ(vH ), ϕ(vK)). So we get the result. �

In the following, we discuss the characterizability of a finite nonsimple group G

by its intersection graph, when Γ(G) has a leaf. We remark that in the following

theorems, we use the notation from Theorem 3.1 (and so Table 1).

Theorem 3.9.

(a) The dihedral group of order 8, D8, is characterizable by its intersection graph.

(b) The group Zp ⋉ (Zp × Zp), where p is an odd prime, is characterizable by its

intersection graph.
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P r o o f. (a) Let G be a finite group such that Γ(G) ∼= Γ(D8). Then using Corol-

lary 3.8, we get that G is a nonsimple group and hence G is one of the groups listed

in Table 1. Since nl(Γ(G)) = nl(Γ(D8)) = 4, we see that G is isomorphic to D8 or to

a group in the last row of Table 1. If G 6= D8, then q = 2 and n = 1, which implies

that p is a PPD of qn − 1 = 1, a contradiction. So we get the result.

(b) Let G = Zp ⋉ (Zp × Zp) and let H be a finite group such that Γ(H) ∼= Γ(G).

Then by Corollary 3.8, H is a nonsimple group and by Table 1, we can easily verify

that H ∼= Zp ⋉ (Zp × Zp). �

Theorem 3.10. Let G be a finite group whose intersection graph is isomorphic

to Γ(Zp × Zp2) for some prime p. Then:

(a) if p = 2, then G ∼= Z2 × Z4,

(b) if p 6= 2, then G ∼= Zp × Zp2 or G ∼= Zp ⋉ Zp2 .

P r o o f. Similarly to the above theorem, we get that G is a nonsimple group and

using Table 1, it can be easily verified that if p = 2, then the only possibility is

G ∼= Z2 ×Z4. Now let p 6= 2. Then by Theorem 3.1 (a) we see that G ∼= Zp ×Zp2 or

G ∼= Zp ⋉ Zp2 , since Γ(Zp × Zp2) ∼= Γ(Zp ⋉ Zp2). �

Theorem 3.11. Let G ∼= Zp × Zq2 for some distinct primes p and q and let H

be a finite group for which Γ(H) ∼= Γ(G). Then H ∼= Zr × Zs2 for arbitrary distinct

primes r and s.

P r o o f. We note that |V (Γ(H))| = 4 and hence H is not isomorphic to any group

in row 6 or 7 in Table 1. So the only possibility is H ∼= Zr × Zs2 for some distinct

primes r and s. It is clear that the primes r and s are arbitrary. �

Theorem 3.12. Let G ∼= Zq2 ⋉Zp for some primes p and q, where q |(p− 1) and

the subgroup of order pq is cyclic. Let H be a finite group whose intersection graph

is isomorphic to Γ(G). Then H ∼= Zr2 ⋉ Zp for some prime r, where r |(p − 1) and

the subgroup of order pr is cyclic. Particularly, if q is the only prime divisor of p− 1,

then H ∼= G.

P r o o f. Obviously H is isomorphic to a group in row 6 or 7 of Table 1. But

comparing the degrees of the vertices in the graphs in Figure 6 and Figure 7, we get

that H is isomorphic to a group in row 6. So H ∼= Zr2 ⋉Zs. Also we can easily verify

that s = p while r is not necessarily equal to q unless p−1 = 2m for some m > 0. �

Theorem 3.13. Let G ∼= Zq2 ⋉ Zp for some distinct primes p and q, where

q2 |(p − 1) and the subgroup of order pq is not cyclic. If H is a finite group with

Γ(H) ∼= Γ(G), thenH ∼= Zr2⋉Zp for some prime r, where r
2 |(p−1) and the subgroup

of order pr is not cyclic. Particularly, if p− 1/q2 is square free, then H ∼= G.
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P r o o f. Similarly to the above, we get that H is isomorphic to a group in row 7

of Table 1. Also it can be easily verified that H ∼= Zr2 ⋉ Zp for some prime r.

Obviously if p− 1/q2 is square free, then r = q and hence H ∼= G. �

Theorem 3.14. Let G ∼= Zq ⋉ (Zp × Zp) for some distinct primes p and q,

where q is a PPD of p2−1 and let H be a finite group such that Γ(H) ∼= Γ(G). Then

H ∼= Zr ⋉ (Zp × Zp), where r is a PPD of p
2 − 1. Particularly, if q is the only PPD

of p2 − 1, then H ∼= G.

P r o o f. Since Γ(H) is disconnected, the only possibility is H ∼= Zr⋉(Zs×Zs) for

some distinct primes r and s, where r is a PPD of s2−1. Since nl(Γ(H)) = nl(Γ(G)),

s = p and so r is a PPD of p2 − 1. �

Theorem 3.15. Let G ∼= Zp⋉N , where N is an extra special q-group of order qn

and a subgroup of order p acts irreducibly on N/Φ(N). Let H be a finite group such

that Γ(H) ∼= Γ(G). Then H ∼= Zr ⋉N , where r is a PPD of qn−1 − 1. Particularly,

if p is the only PPD of qn−1 − 1, then H ∼= G.

P r o o f. Considering the number of leaves in Γ(H) and also the number of leaves

in each set of coneighbour leaves in Γ(H), we get that H ∼= Zr ⋉ S, where S is an

extra special q-group of order qn and r is a PPD of qn−1 − 1. Note that if x is an

element of G of order q2, then v〈x〉 and v〈xq〉 are coneighbour in Γ(G). Thus we get

that N and S have the same exponent and hence N ∼= S. �

Theorem 3.16. Let G ∼= Zp ⋉ N , where N is a UCS q-group of order q2n with

Φ(N) ∼= Zn
q and a subgroup of order p acts irreducibly on N/Φ(N). Let H be a finite

group such that Γ(H) ∼= Γ(G). Then H ∼= Zr ⋉ S, where S is a UCS q-group of

order q2n with Φ(S) ∼= Zn
q and r is a PPD of qn−1 − 1.

P r o o f. Similarly to the above we get that H ∼= Zr⋉S, where S is a UCS q-group

of order q2n with Φ(S) ∼= Zn
q and r is a PPD of qn−1 − 1. �

Acknowledgements. The authors are very thankful to Professor Derek Holt for

his great help and valuable comments.

References

[1] S.Akbari, F.Heydari, M.Maghasedi: The intersection graph of a group. J. Algebra Appl.
14 (2015), Article ID 1550065, 9 pages. zbl MR doi

[2] B.Csákány, G. Pollák: The graph of subgroups of a finite group. Czech. Math. J. 19
(1969), 241–247. (In Russian.) zbl MR doi

[3] S.P.Glasby, P. P. Pálfy, C. Schneider: p-groups with a unique proper non-trivial char-
acteristic subgroup. J. Algebra 348 (2011), 85–109. zbl MR doi

208

https://zbmath.org/?q=an:1309.05090
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3323326
http://dx.doi.org/10.1142/S0219498815500656
https://zbmath.org/?q=an:0218.20019
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0249328
http://dx.doi.org/10.21136/CMJ.1969.100891
https://zbmath.org/?q=an:1252.20014
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2852233
http://dx.doi.org/10.1016/j.jalgebra.2011.10.005


[4] S.Kayacan: K3,3-free intersection graphs of finite groups. Commun. Algebra 45 (2017),
2466–2477. zbl MR doi

[5] S.Kayacan, E.Yaraneri: Abelian groups with isomorphic intersection graphs. Acta
Math. Hung. 146 (2015), 107–127. zbl MR doi

[6] S.Kayacan, E. Yaraneri: Finite groups whose intersection graphs are planar. J. Korean
Math. Soc. 52 (2015), 81–96. zbl MR doi

[7] H.Shahsavari, B.Khosravi: On the intersection graph of a finite group. Czech. Math.
J. 67 (2017), 1145–1153. zbl MR doi

[8] H.Shahsavari, B.Khosravi: Characterization of some families of simple groups by their
intersection graphs. Commun. Algebra 48 (2020), 1266-1280. zbl MR doi

[9] R. Shen: Intersection graphs of subgroups of finite groups. Czech. Math. J. 60 (2010),
945–950. zbl MR doi

[10] D.R.Taunt: Finite groups having unique proper characteristic subgroups. I. Proc.
Camb. Philos. Soc. 51 (1955), 25–36. zbl MR doi

[11] B.Zelinka: Intersection graphs of finite Abelian groups. Czech. Math. J. 25 (1975),
171–174. zbl MR doi

Authors’ address: H o s s e i n S h a h s av a r i, B e h r o o z K h o s r a v i (corresponding
author), Department of Pure Mathematics, Faculty of Mathematics and Computer Science,
Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran 15914,
Iran, e-mail: h.shahsavari13@yahoo.com, khosravibbb@yahoo.com.

209

https://zbmath.org/?q=an:1388.20035
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3594532
http://dx.doi.org/10.1080/00927872.2016.1233209
https://zbmath.org/?q=an:1374.20047
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3348183
http://dx.doi.org/10.1007/s10474-015-0486-9
https://zbmath.org/?q=an:1314.20016
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3299371
http://dx.doi.org/10.4134/JKMS.2015.52.1.081
https://zbmath.org/?q=an:06819578
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3736024
http://dx.doi.org/10.21136/CMJ.2017.0446-16
https://zbmath.org/?q=an:1435.05104
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR4079532
http://dx.doi.org/10.1080/00927872.2019.1682151
https://zbmath.org/?q=an:1208.20022
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2738958
http://dx.doi.org/10.1007/s10587-010-0085-4
https://zbmath.org/?q=an:0064.02402
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0067886
http://dx.doi.org/10.1017/S0305004100029881
https://zbmath.org/?q=an:0311.05119
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0372075
http://dx.doi.org/10.21136/CMJ.1975.101307

		webmaster@dml.cz
	2021-04-19T14:45:20+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




