[1] Alekseevsky D., Arvanitoyeorgos A.:
Riemannian flag manifolds with homogeneous geodesics. Trans. Amer. Math. Soc. 359 (2007), no. 8, 3769–3789.
MR 2302514
[3] Berndt J., Tricerri F., Vanhecke L.:
Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces. Lecture Notes in Mathematics, 1598, Springer, Berlin, 1995.
MR 1340192
[4] Deng S.:
Homogeneous Finsler Spaces. Springer Monographs in Mathematics, Springer, New York, 2012.
MR 2962626
[5] Dušek Z.:
Explicit geodesic graphs on some H-type groups. Proc. of the 21st Winter School Geometry and Physics, Srní, 2001, Rend. Circ. Mat. Palermo (2) Suppl. (2002), no. 69, 77–88.
MR 1972426 |
Zbl 1025.53019
[6] Dušek Z.:
Structure of geodesics in the flag manifold $ SO(7)/ U(3)$. Differential Geometry and Its Applications, World Sci. Publ., Hackensack, 2008, 89–98.
DOI 10.1142/9789812790613_0009 |
MR 2462785
[7] Dušek Z.:
Homogeneous geodesics and g.o. manifolds. Note Mat. 38 (2018), no. 1, 1–15.
MR 3809649
[10] Kowalski O., Nikčević S.:
On geodesic graphs of Riemannian g.o. spaces. Arch. Math. (Basel) 73 (1999), no. 3, 223–234; Appendix: Arch. Math. (Basel) 79 (2002), no. 2, 158–160.
DOI 10.1007/s000130050032 |
MR 1924152
[11] Kowalski O., Vanhecke L.:
Riemannian manifolds with homogeneous geodesics. Boll. Un. Math. Ital. B(7) 5 (1991), no. 1, 189–246.
MR 1110676
[15] Parhizkar M., Latifi D.:
Geodesic vectors of Randers metrics on nilpotent Lie groups of dimension five. Glob. J. Adv. Res. Class. Mod. Geom. 7 (2018), no. 2, 92–101.
MR 3861222
[17] Szenthe J.:
Sur la connection naturelle à torsion nulle. Acta Sci. Math. (Szeged) 38 (1976), no. 3–4, 383–398 (French).
MR 0431042