Previous |  Up |  Next

Article

Keywords:
Weingarten hypersurface; Laguerre minimal surface; $r$th mean curvature; Laplace--Beltrami operator
Summary:
We generalize a parametrization obtained by A.\,V. Corro in (2006) in the three-dimensional Euclidean space. Using this parametrization we study a class of oriented hypersurfaces $M^n$, $n\geq 2$, in Euclidean space satisfying a relation $\sum_{r=1}^{n} (-1)^{r+1}rf^{r-1} { n \choose r}H_r=0,$ where $H_r$ is the $r$th mean curvature and $f\in C^{\infty}(M^n;\mathbb{R})$, these hypersurfaces are called Weingarten hypersurfaces of the spherical type. This class of hypersurfaces includes the surfaces of the spherical type (Laguerré minimal surfaces). We characterize these hypersurfaces in terms of harmonic applications. Also, we classify the Weingarten hypersurfaces of the spherical type of rotation and we give explicit examples.
References:
[1] Blaschke W.: I. Grundformeln der Flächentheorie. Abh. Math. Sem. Univ. Hamburg 3 (1924), no. 1, 176–194 (German). DOI 10.1007/BF02954623 | MR 3069426
[2] Blaschke W.: II. Flächentheorie in Ebenenkoordinaten. Abh. Math. Sem. Univ. Hamburg 3 (1924), no. 1, 195–212 (German). DOI 10.1007/BF02954624 | MR 3069427
[3] Blaschke W.: III. Beiträge zur Flächentheorie. Abh. Math. Sem. Univ. Hamburg 4 (1925), no. 1, 1–12 (German). DOI 10.1007/BF02950714 | MR 3069436
[4] Blaschke W.: Vorlesungen über Differentialgeometrie und Geometrische Grundlagen von Einsteins Relativitätstheorie III. Springer, Berlin, 1929 (German). MR 0015247
[5] Corro A. V.: Generalized Weingarten surfaces of Bryant type in hyperbolic $3$-space. Mat. Comtemp. 30 (2006), 71–89. MR 2373504
[6] Corro A. M. V., Fernandes K. V., Riveros C. M. C.: Generalized Weingarten surfaces of harmonic type in hyperbolic $3$-space. Differential Geom. Appl. 58 (2018), 202–226. DOI 10.1016/j.difgeo.2018.02.001 | MR 3777754
[7] Dias D. G.: Classes de hipersuperfícies Weingarten generalizada no espaço euclidiano. Ph.D. Thesis, Universidade Federal de Goiás, Goiânia, 2014 (Portuguese).
[8] Ferreira W., Roitman P.: Hypersurfaces in hyperbolic space associated with the conformal scalar curvature equation $\delta u+ku^{\frac{n+2}{n-2}}= 0$. Diffferential Geom. Appl. 27 (2009), no. 2, 279–295. DOI 10.1016/j.difgeo.2008.10.009 | MR 2503979
[9] Gálvez J. A., Martínez A., Milán F.: Complete linear Weingarten surfaces of Bryant type. A Plateau problem at infinity. Trans. Amer. Math. Soc. 356 (2004), no. 9, 3405–3428. DOI 10.1090/S0002-9947-04-03592-5 | MR 2055739
[10] Miyagaki O. H.: Equaç oes elípticas modeladas em variedades Riemannianas: Uma introdução. Apresentado em Milênio Workshop em equaç oes elípticas, João Pessoa, 2004 (Portuguese).
[11] Obata M.: The Gauss map of immersions of Riemannian manifolds in spaces of constant curvature. J. Differential Geometry 2 (1968), 217–223. DOI 10.4310/jdg/1214428258 | MR 0234388
[12] Pottmann H., Grohs P., Mitra N. J.: Laguerre minimal surfaces, isotropic geometry and linear elasticity. Adv. Comput. Math. 31 (2009), no. 4, 391–419. DOI 10.1007/s10444-008-9076-5 | MR 2558260
[13] Schief W. K.: On Laplace–Darboux-type sequences of generalized Weingarten surfaces. J. Math. Phys. 41 (2000), no. 9, 6566–6599. DOI 10.1063/1.1286980 | MR 1779663
Partner of
EuDML logo