[1] Borel-Mathurin L.:
Approximation properties and non-linear geometry of Banach spaces. Houston J. Math. 38 (2012), no. 4, 1135–1148.
MR 3019026
[3] Cho C.-M., Johnson W. B.:
A characterization of subspaces $X$ of $l_p$ for which $K(X)$ is an $M$-ideal in $L(X)$. Proc. Amer. Math. Soc. 93 (1985), no. 3, 466–470.
MR 0774004
[4] Godefroy G.:
A survey on Lipschitz-free Banach spaces. Comment. Math. 55 (2015), no. 2, 89–118.
MR 3518958
[5] Godefroy G.:
Extensions of Lipschitz functions and Grothendieck's bounded approximation property. North-West. Eur. J. Math. 1 (2015), 1–6.
MR 3417417
[10] Kalton N. J.:
Spaces of Lipschitz and Hölder functions and their applications. Collect. Math. 55 (2004), no. 2, 171–217.
MR 2068975
[12] Oja E.:
On bounded approximation properties of Banach spaces. Banach algebras 2009, Banach Center Publ., 91, Polish Acad. Sci. Inst. Math., Warsaw, 2010, pages 219–231.
MR 2777497
[13] Pernecka E., Smith R. J.:
The metric approximation property and Lipschitz-free spaces over subsets of $\mathbb{R}^n$. J. Approx. Theory 199 (2015), 29–44.
DOI 10.1016/j.jat.2015.06.003 |
MR 3389905