[1] Aassila, M., Cavalcanti, M. M., Soriano, J. A.:
Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain. SIAM J. Control Optim. 38 (2000), 1581-1602.
DOI 10.1137/S0363012998344981 |
MR 1766431 |
Zbl 0985.35008
[2] Achouri, Z., Amroun, N. E., Benaissa, A.:
The Euler-Bernoulli beam equation with boundary dissipation of fractional derivative type. Math. Methods Appl. Sci. 40 (2017), 3837-3854.
DOI 10.1002/mma.4267 |
MR 3668815 |
Zbl 1366.93484
[6] Coleman, B. D., Dill, E. H.:
On the thermodynamics of electromagnetic fields in materials with memory. Arch. Rational Mech. Anal. 41 (1971), 132-162.
DOI 10.1007/BF00281371 |
MR 0347245
[7] Coleman, B. D., Dill, E. H.:
Thermodynamic restriction on the constitutive equations of electromagnetic theory. Zeit. Angew. Math. Phys. 22 (1971), 691-702.
DOI 10.1007/BF01587765 |
Zbl 0218.35072
[15] Komornik, V., Zuazua, E.:
A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl. (9) 69 (1990), 33-54.
MR 1054123 |
Zbl 0636.93064
[16] Lions, J.-L.:
Quelques méthodes de résolution des problèmes aux limites non linéaires. Etudes mathematiques. Dunod; Gauthier-Villars, Paris (1969), French.
MR 0259693 |
Zbl 0189.40603
[17] Matignon, M., Audounet, J., Montseny, G.: Energy decay rate for wave equations with damping of fractional order. Fourth Int. Conf. Mathematical and Numerical Aspects of Wave Propagation Phenomena (1998), 638-640.
[18] Matos, L. P. V., Dmitriev, V.:
On the stability of energy and harmonic waves in conductors with memory. SBMO/IEEE MTT-S Int. Microwave and Optoelectronics Conf. (IMOC) IEEE, Belem (2009), 528-532.
DOI 10.1109/IMOC.2009.5427530
[22] Rivera, J. E. Muñoz, Naso, M. G., Vuk, E.:
Asymptotic behaviour of the energy for electromagnetic systems with memory. Math. Methods Appl. Sci. 27 (2004), 819-841.
DOI 10.1002/mma.473 |
MR 2055321 |
Zbl 1054.35103
[23] Nicaise, S., Pignotti, C.:
Stabilization of the wave equation with variable coefficients and boundary condition of memory type. Asymptotic Anal. 50 (2006), 31-67.
MR 2286936 |
Zbl 1139.35373
[24] Park, J. Y., Park, S. H.:
Decay rate estimates for wave equations of memory type with acoustic boundary conditions. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 993-998.
DOI 10.1016/j.na.2010.09.057 |
MR 2738648 |
Zbl 1202.35032
[25] Pata, V., Zucchi, A.:
Attractors for a damped hyperbolic equation with linear memory. Adv. Math. Sci. Appl. 11 (2001), 505-529.
MR 1907454 |
Zbl 0999.35014
[27] Yassine, H.:
Stability of global bounded solutions to a nonautonomous nonlinear second order integro-differential equation. Z. Anal. Anwend. 37 (2018), 83-99.
DOI 10.4171/ZAA/1604 |
MR 3746499 |
Zbl 06852543
[28] Zacher, R.:
Convergence to equilibrium for second order differential equations with weak damping of memory type. Adv. Differ. Equ. 14 (2009), 749-770.
MR 2527692 |
Zbl 1190.45007