Previous |  Up |  Next

Article

Keywords:
Darbo's fixed point theorem; equicontinuous sets; infinite system of second order differential equations; infinite system of integral equations; measures of noncompactness
Summary:
The concept of measures of noncompactness is applied to prove the existence of a solution for a boundary value problem for an infinite system of second order differential equations in $\ell _{p}$ space. We change the boundary value problem into an equivalent system of infinite integral equations and result is obtained by using Darbo's type fixed point theorem. The result is illustrated with help of an example.
References:
[1] Agarwal, R. P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109 (2010), 973-1033. DOI 10.1007/s10440-008-9356-6 | MR 2596185 | Zbl 1198.26004
[2] Aghajani, A., Pourhadi, E.: Application of measure of noncompactness to $\ell_1$-solvability of infinite systems of second order differential equations. Bull. Belg. Math. Soc.-Simon Stevin 22 (2015), 105-118. DOI 10.36045/bbms/1426856862 | MR 3325725 | Zbl 1329.47082
[3] Banaś, J., Goebel, K.: Measures of Noncompactness in Banach Spaces. Lecture Notes in Pure and Applied Mathematics 60. Marcel Dekker, New York (1980). MR 0591679 | Zbl 0441.47056
[4] Banaś, J., Lecko, M.: Solvability of infinite systems of differential equations in Banach sequence spaces. J. Comput. Appl. Math. 137 (2001), 363-375. DOI 10.1016/S0377-0427(00)00708-1 | MR 1865237 | Zbl 0997.34048
[5] Banaś, J., Mursaleen, M.: Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral Equations. Springer, New Delhi (2014). DOI 10.1007/978-81-322-1886-9 | MR 3289625 | Zbl 1323.47001
[6] Banaś, J., Mursaleen, M., Rizvi, S. M. H.: Existence of solutions to a boundary-value problem for an infinite system of differential equations. Electron. J. Differ. Equ. 2017 (2017), Paper No. 262, 12 pages. MR 3723535 | Zbl 1372.34096
[7] Darbo, G.: Punti uniti in trasformazioni a codominio non compatto. Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92 Italian. MR 0070164 | Zbl 0064.35704
[8] Deimling, K.: Ordinary Differential Equations in Banach Spaces. Lecture Notes in Mathematics 596. Springer, Berlin (1977). DOI 10.1007/BFb0091636 | MR 0463601 | Zbl 0361.34050
[9] Deimling, K.: Nonlinear Functional Analysis. Dover Books on Mathematics. Dover Publications, Mineola (2010). DOI 10.1007/978-3-662-00547-7 | MR 0787404 | Zbl 1257.47059
[10] Duffy, D. G.: Green's Functions with Applications. Studies in Advanced Mathematics CRC Press, Boca Raton (2015). DOI 10.1201/b18159 | MR 1888091 | Zbl 1343.35002
[11] Klamka, J.: Schauder's fixed-point theorem in nonlinear controllability problems. Control Cybern. 29 (2000), 153-165. MR 1775163 | Zbl 1011.93001
[12] Kuratowski, C.: Sur les espaces complets. Fundamenta 15 (1930), 301-309 French. DOI 10.4064/fm-15-1-301-309 | Zbl 56.1124.04
[13] Liu, Z., Kang, S. M.: Applications of Schauder's fixed-point theorem with respect to iterated functional equations. Appl. Math. Lett. 14 (2001), 955-962. DOI 10.1016/S0893-9659(01)00071-4 | MR 1855937 | Zbl 0990.39019
[14] Malkowsky, E., Rakočević, V.: An introduction into the theory of sequence spaces and measures of noncompactness. Four Topics in Mathematics Zbornik Radova {\it 9(17)}. Matematički Institut SANU, Beograd (2000), 143-234 B. Stanković. MR 1780493 | Zbl 0996.46006
[15] Mohiuddine, S. A., Srivastava, H. M., Alotaibi, A.: Application of measures of noncompactness to the infinite system of second-order differential equations in $\ell_p$ spaces. Adv. Difference Equ. 2016 (2016), Paper No. 317, 13 pages. DOI 10.1186/s13662-016-1016-y | MR 3579739 | Zbl 06988399
[16] Mursaleen, M.: Application of measure of noncompactness to infinite systems of differential equations. Can. Math. Bull. 56 (2013), 388-394. DOI 10.4153/CMB-2011-170-7 | MR 3043065 | Zbl 1275.47133
[17] Mursaleen, M., Mohiuddine, S. A.: Applications of measures of noncompactness to the infinite system of differential equations in $\ell_p$ spaces. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 2111-2115. DOI 10.1016/j.na.2011.10.011 | MR 2870903 | Zbl 1256.47060
[18] Mursaleen, M., Rizvi, S. M. H.: Solvability of infinite systems of second order differential equations in $c_0$ and $\ell_1$ by Meir-Keeler condensing operators. Proc. Am. Math. Soc. 144 (2016), 4279-4289. DOI 10.1090/proc/13048 | MR 3531179 | Zbl 1385.47021
[19] Mursaleen, M., Rizvi, S. M. H., Samet, B.: Solvability of a class of boundary value problems in the space of convergent sequences. Appl. Anal. 97 (2018), 1829-1845. DOI 10.1080/00036811.2017.1343464 | MR 3832170 | Zbl 1396.93063
[20] Srivastava, H. M., Das, A., Hazarika, B., Mohiuddine, S. A.: Existence of solutions of infinite systems of differential equations of general order with boundary conditions in the spaces $c_0$ and $\ell_1$ via the measure of noncompactness. Math. Methods Appl. Sci. 41 (2018), 3558-3569. DOI 10.1002/mma.4845 | MR 3820168 | Zbl 06923678
Partner of
EuDML logo