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Abstract. We study the existence of global in time and uniform decay of weak solutions to
the initial-boundary value problem related to the dynamic behavior of evolution equation
accounting for rotational inertial forces along with a linear nonlocal frictional damping
arises in viscoelastic materials. By constructing appropriate Lyapunov functional, we show
the solution converges to the equilibrium state polynomially in the energy space.
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1. INTRODUCTION

We study the boundedness and asymptotic properties of solutions as ¢ — oo of
the linear wave equation with memory

’U,tt—A’U,tt—A’u,—f—k}*’U,t:O, t>0, ze,
(1.1) u =0, (x,t) e T x Ry,
u(m,O) = UO({E), ut(x,O) = ul(x)v r € Q,

where the unknown u(x,t) is real valued function and € is an open bounded domain
in RY with smooth boundary I' = 9Q. The functions ug(z) and u;(z) are given
initial data. The kernel relaxation function k(t), often called the relaxation, will be
specified later on. The term —Awuy accounts for rotational inertia forces and the
convolution term k * u; := fot k(t — s)us(s) ds represents the memory effect with a
real-valued function k.
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This paper deals with polynomial stability of different kinds for vibrations, mod-
eled by the standard linear model of conducting material with memory. Problem (1.1)
without fourth order term has its origin in continuum mechanics for viscoelastic ma-
terials which describes the evolution of electromagnetic field through a linear vis-
coelastic solid body ([6], [7], [11], [10], [19]). It is known that the memory effect
exhibits natural damping, which is due to the special property of these materials to
retain a memory of their past history. From the mathematical point of view, these
linear viscoelastic damping effects are modeled by convolution integrals. Therefore,
the dynamics of electromagnetic constitutive relations are of great importance and
interest since they have immense applications in the applied and engineering sciences.

The mathematical study on stabilization of vibrating viscoelastic structures is an
active area of research among others. The question of stabilization of boundary value
problems for the damped wave equation with various approaches, such as abstract
semigroup theory, multiplier techniques method, etc. has earlier been studied by
several authors (see e.g. [15], [8], [12], [22], [1], [4], [23], [5], [9] and references therein).

Let us briefly give an overview of some related results in the literature. The sem-
inal paper [8] by Dafermos was among earliest results on the asymptotic behavior of
solutions to the equations of linear viscoelasticity at large time. Rivera et al. in [22]
investigated evolutions systems of the theory of free hereditary electromagnetic field,
specifically, they study a model for general conducting material with memory and
another for ionospheric phenomena. In both models, the constitutive relations of
the material considers the past history of the electric field. Then they use a Lya-
punov functionals and semigroup approach to show the existence of solutions, lack
of exponential decay and polynomial decay of the solution. A similar problem was
studied by Matos and Dmitriev in [18], with the presence of a frictional damping
and with effect of two memories in the constitutive relations, where the uniform
exponential stability of the associated energy has been obtained via the semigroup
method.

Pata and Zucchi in [25] established the theory of finite dimensional attractors for
a damped hyperbolic equation with a linear memory. In an innovative work [4],
Cavalcanti and Oquendo studied the energy decay rate for a partially viscoelastic
nonlinear wave equation subject to a nonlinear and localized frictional damping. Re-
cently, Messaoudi in [21] investigated the general decay rate properties in the energy
norm for solutions of a wave equation with viscoelastic damping. We refer the reader
to [24], [14], [13], [26] and the references therein for other related results. However,
in the case of convolution terms k * u; involving singular kernels, in particular for
problems of fractional time order, there seems to be few results concerning the uni-
form decay via Lyapunov functionals in the literature (see Chill and Fasangova [5],
Zacher [28], Yassine [27]).
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The purpose of this paper is to show whether the dissipation given by the memory
kernel is strong enough to produce a uniform decay of the solution for problem (1.1).
The main issue we encounter here comes from the non-local nature of the memory
damping term, moreover, the kernel k(t) may possibly be singular at ¢ = 0, which
prevents us from reducing such complications. Overcoming this by adopting energy
multipliers techniques method consists of constructing new suitable Lyapunov func-
tional, using ideas from Komornik and Zuazua [15], Giorgi et al. [12]. Chill and
FaSangova in [5] instead of having to use of semigroup theory (cf. [17], [20], [9],
18], [2]).

The remainder of the paper is organized as follows. In Section 2, we give some
lemmas which are useful for the proofs of Theorems 3.1 and 3.2. In Section 3 the main
result is enunciated and the proof of well-posedness theorem is provided. Finally, in
Section 4 the uniform decay of the solution is proved.

2. PRELIMINARIES

In this section, we shall present some material needed in the proof of our results
which are stated at the end of this section. We use the standard Lebesgue space
L?(€2) and Sobolev space HE () with their usual norms |[|-||2 and || ||z respectively.
We will write (-,-) to denote the inner product in L?(f2). Let C. be the smallest
positive constant such that

llulla < Cu||Vullz  for u € HE ().
Throughout this paper, C' and C; are used to denote generic positive constants.

2.1. Assumptions on the memory kernel. In order to prove the result for our
problem, we suppose that the function k satisfies the following assumption:
(A) The kernel k is assumed to be positive, convex and integrable on (0, c0), and
there exists a constant C' > 0 such that

(2.1) dk'(s) + CK'(s)ds > 0,

where d&’ is the distributional derivative of &’.

Typical examples we consider for k include time fractional derivative kernel

1
k(t) = Ta)t(y_le_ﬁt with o € (0, 1] and 8 > 0.
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Remark 2.1. If we integrate inequality (2.1), we obtain an inequality which
will be used in the sequel:

0 < k(s)ds < —kok/(s)ds < k1 dk'(s) on (0,00)
for some kg, k1 > 0.
As a consequence of assumption (A), the kernel k verifies the following lemma
(see [3], [5]).
Lemma 2.2. Let k satisfy (A). Then

. _ . 211 o . o . 211 _
81_1>r(r)14r sk(s) = 81_1>r(r)14r sk’ (s) = 0, glggo sk(s) = Slgrolos E'(s) = 0.

Now, following the approach of Dafermos (see [8]), let us introduce the following

notation: .
n(t,s) = / v(r)dr, 0<s<t.
t—s

The following lemma is required in the construction of the Lyapunov functional. Its
proof can be found in [5].

Lemma 2.3. Let k € L\ .(R}) be positive and convex. Let v € L2 (Ry; H).

loc
Then we have for almost every t > 0,

1d !
S 2dt J,

+5 [ It ak(5)+ 5K O)lnte. Ol

(k*o(t),v(t)m (=K' (Nln(t, )17 ds + %(k(t)lln(t t)ll%)

The next lemma is useful in showing well-posedness of the result; it was introduced
in [22], and its proof follows directly by developing the term

d t

at k(s)lg(t) — o(t = s)[* ds.

Lemma 2.4. For any function k € C'(R) and any ¢ € W12(0,T) we have that
1t
(k* @) (£)pe(t) = — Sk(®)|p(t)]” + 5/0 K (s)lp(t) — o(t — 5)|* ds

%([k@ww—wa—w““‘ﬁk“”““mﬁ'

N = N =
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3. EXISTENCE AND UNIQUENESS OF WEAK SOLUTIONS
The well-posedness of system (1.1) is given by the following proposition.

Proposition 3.1. Let us take ug € H}(Q) N H*(Q), vy € HY(Q) and let us
suppose that assumption (A) holds. Then there exists a unique solution u of prob-
lem (1.1) satisfying

u € L(0,00; HY(Q) N H?(Q)), wus € L°°(0,00; HY (), us € L*(0,00; L*(Q)).
Theorem 3.2. Let all the conditions of Proposition 3.1 be satisfied. Then the

energy for the global solution of system (1.1) decays polynomially, i.e. there exists
positive constant M such that

<
Py
WV
o

M
Et) < —
(®) t+1

Proof. Let us denote by A the operator
Aw = —Aw, D(A) = H}(Q) N H*(Q).

It is well known that A is a positive self-adjoint operator in the Hilbert space L?(2)
for which there exist sequences {wy, } men and { A, }men of eigenfunctions and eigen-
values of A, respectively, such that the set of linear combinations of {w, }men is
dense in D(A) and A\ < Ay < ... < Ay, — 00 as m — 0.

Now for any integer m € N we consider the finite-dimensional subspace

Vin = Span{wy, ..., wm} C Hy(Q) N H?(Q),

and for given initial data (ug,u1) € D(A) x HJ(2) we search for functions
u" () =D ymy (D
j=1

which satisfy the approximate problem

31 (ui (), w;) + (Vugg (8), Vw;) + (Vu™ (), Vw;) + (ki (1), w;) =0,

j=1,....,m,

with initial conditions
u™(0) = ug',  u*(0) = uy,

209



where

ul* = ug in D(A) and ul" — wuy in HY(Q) asm — oo.

We note that the approximate problem (3.1) can be reduced to an ordinary differ-
ential equation (ODE) system and by the standard existence theory for ODEs, this
problem has a local solution u™ (¢) in some interval [0,7,,) with 0 < T, < T. The
estimate below will allow us to extend the local solutions ™ (¢) to the interval [0, T]
for any given 7" > 0.

Now, we derive the first estimate. Multiplying (3.1) by y;,;(t) and summing with
respect to j, we conclude from Lemma 2.3 that

62 (G0 v vy
1

w5 [ CREIm s+ kOl )

Lt 1, m
_ _5/0 ™ (& )12 A (5) + Sk (0) ™ (1,011,

where 9™ (t,s) = u™(t) — u™(t — s).
Integrating (3.2) over (0,¢) and using assumption (A), we infer that

1 m m m
3.3) Sl + Ve |? + [Ve™?)

1

+§/0 (=K (Dlln™ (8. 8)|I* ds + k() [n™ (¢, )]

< S I + IVuf|? + Vg [%) + lim k(s)lln™ (s, 5)|

N =

: ~ m 2 _ Jim <2 m 272 _ :
Since ilg(l)k(s)ﬂn (s,9)|l —ili%s E(s)|ln™(s, s)||?/s* = 0, we obtain

(3.4) (g [1* + I7u™ |2 + [ V™ %)

N =

1

+3 [ ROl as+ KO0 < O

where C is a positive constant depending only on |uol| gz and [[u1 1.
It follows from (3.4) that

u™ is uniformly bounded in L>(0, T; Hg(Q2)),
u is uniformly bounded in L>(0,T; H3(2)).
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Then we derive the second estimate. Multiplying (3.1) by yzlj (t) and then sum-
ming with respect to j, it holds that

(3.5) (g ||2 + [ Vuiy HLZ = —(Vu™, Vuiy) — (ugy, k *ui").

By Young’s inequality, the first term on the right-hand side of (3.5) can be estimated
as

m m m 1 m
(3.6) [=(Vu ,Vutt)|</\||VuttH§+ﬁHVu 13, A>o0.

On the other hand, in view of Lemma 2.4, we have that

1) k) = RO+ 5 [ KOs ds

di</ k()™ (2. ) ds—/o K(r)dr [luf" I2>

DO | = wl»—‘

using (3.7) in (3.5), we find

@) 13-+ 1913 — 3 5 ([ ksl sy 17ds = [ ke ar )

= = (Vu™, Vuii) + k()llu I\Q—g/o K (s)ln™ (¢, )]* ds.

Integrating (3.8) over (0,¢) and using (3.6) yields
K 2 K 2 1 K 2
(3.9) / ()12 ds + (1 - ) / IVl (s)]22 ds + / K(r) dr ||uf"

< i [ 1vwreizas 3 [ keenas

—5/ @l (s as + 5 [kl 6P ds

0

1
< N T 3
4)\02 + Cs

where C> and Cj are positive constants depending only on ||lugl| g and [[u1 g2 and
Jo7 k(s)ds.

Estimate (3.9) implies that u}} is uniformly bounded in L?(0,T; H}(12)).

According to (3.4) and (3.9) we can extract subsequence {u”} C {u™} which
verifies:

u’ —u weak star in L>(0,T; H}(Q)),

(3.10) uf — uy weak star in L>(0,T; H}(Q)),
(3.11) u¥y — uy  weak in L2(0,T; Hy ().
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Hence by Aubin’s compactness lemma (see [16]), it follows from (3.10) and (3.11)
that there exists a subsequence of {u"”} still denoted by {u”} such that

(3.12) u? — uy strongly in L>(0,T; L*(Q)),
u¥, — ug  strongly in L2(0,T; L*(Q)),

which implies uy — u; almost everywhere in (0,7) x Q.

Multiplying (3.1) by 0(t) € D(0,T) (here D(0,T) denotes the space of functions
in C* with compact support in (0,7")) and integrating over (0,7, it follows that

(3.13) /0 (ugy (t), w;)0(t) dt +/O (Vug; (t), Vw;)0(t) dt +/0 (Vu™(t), Vw;)0(t) dt
+/T(k*u,§”(t),wj)9(t)dt =0 Vj=1,...,m
0

Convergences (3.10)—(3.11) and (3.12) are sufficient to pass to the limit in (3.13) in
order to obtain

Uy — Augy — Au+kxug =0 in L _(0,00; H1(Q)).
Uniqueness of solutions: We derive the uniqueness of solutions using the usual
energy method.
In fact, let u and v be two solutions of problem (1.1). Then from problem (3.1),
the function z = u — v satisfies

(zet, w) + (Vz, Vw) + (Vz, Vw) + (k* 2z, w) =0, t>0, x€Q

for all w € H}(Q2). Taking w = 2;, we get

2dt/| z|*d +—d—/|V t|2dx+—d—/|Vz|2dx+(k*zt,zt) 0, t>0,

then from Lemma 2.3 and taking Remark 2.1 into account, we obtain

Ld 2 gy 14 s il / v
th/ |Zt(t)| dx+2dt Q|Vzt( | dx+2dt |VZ | dz

t

3@ (/ (=K' () In(t, s)II* ds + k(t)|77(t,t)||2)
0
1
- ‘5/ Int, )| k() + S#/ (1) n(t, O <0, ¢ >0,
0
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Integrating the last inequality over (0,t), we deduce that
1 2 1 2 1 2
(3.14) <= [ |z@®|*de+ < | [Va@)|"de+ < | |Vz(t)|[*dx
2 Ja 2 Ja 2 Ja
1 t
5 ([ Rl as+ kol ol
1 Lre 2 ! 1 ‘ / 2
+5 [n(s, " dk (1) ds + 5 [ K'(s)ln(s, s)[|" ds
2 Jo Jo 2 Jo

< (lall® + [V * + [1V20]?) =0,

N =

from (3.14) and employing Gronwall’s lemma we conclude that |z:(t)| = [Vz(¢)| = 0.
This finishes the proof. O

4. POLYNOMIAL DECAY

In the following lemmas we will prove some technical inequalities which will be
useful for showing the polynomial decay of the solution.
By E we denote the first-order energy associated to problem (1.1):

E(t) = %(Il’utH2 + [Vl * + [ V) + %/0 (=K ()t )1 ds + k()0 (t, )]

Using Lemma 2.3, we easily conclude that

d

(41) GEO =5 [ Il K () + ZF Oll01* <o

and the energy decreases.
In order to show the uniform decay result, we need the following lemmas.

Lemma 4.1. Under the assumptions of Theorem 3.2, the functional
1
£t) =3 <|V’ut|2 + [ Aug|* + [| A
t
+/ (=K' (s))[IVn(t, 5)1* ds + 2k(t)|Vﬂ(t7t)l2), t>0,
0

satisfies along the solution of (1.1) the equality

d

(42) GEO =5 [ 199l Ak () + 5K @I 0
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Proof. Taking the inner product of (1.1) with —Aw, for H = L?(Q),
(Vug, Vuge) + (Aug, Augt) + (Aug, Au) + (Vug, b+ Vug) =0

using Lemma 2.3 on the last term, we get immediately

1d L
g3z (17l + 18w? 4 1?4 [ R )T, 91 ds + 260|911

= =5 [ I9as) 17 ar ) + S @ vate o

Lemma 4.2. The functional

D(t) := (ug,u) + (Vug, Vu) — (u, /Ot k(s)n(t, s) ds), t >0,

satisfies along the solution of (1.1)

d

(43

3 3
S0(0) < IVl + [Vl + (5 + FOIR o, ) Il

3 C t
+ ZC(—k’(t))Hn(t,t)llz + 5Hk|\u<u@+>/0 In(t, s)||* d&'(s).

Proof. Considering the scalar product in L?(Q) of equation (1.1) with u, we
get
(ugr, u) — (Auge, u) — (Au,u) + (u, k xug) =0,

by using Green’s formula we obtain

d
() ) — el + 5 (T, V) — [ Vel + [0l + () =0,

and with the aid of

(4.5) ks g = k(O 1) +ut/0 k(s)ds — %/0 k(s)n(t, s) ds,
from (4.4) and (4.5) we infer that
(4.6)  (u,k*xug) = (u, k(t)n( (u, uy /0 k(s)ds — < %/0 k(s)n(t, s) ds)

= (u, k(t)n( (u,uy)

(ut,/k n(t,s)d

k ds——<u,/0tk(s)77(t, s)ds)

\_/c\
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Substituting (4.6) into (4.4), we find
(4.7) i(u u)—i—g(Vu Vu)—i u /tk(s) (t,s)ds
’ dar et g at\" f,
= uel® = [IVue|* + [ Val® + (u, k(t)n(t, 1)

+ (u, uy) /Ot k(s)ds + (ut, /Ot k(s)n(t, s) ds) =0.

From (4.7), we see that

O = (ug,u) + (Vug, Vu) — <u, /Ot k(s)n(t,s) ds)

verifies

(4.8) Lo IVull® = uel® + [[Vuel* = (u, k(E)n(t, 1)) — /0 k(s) ds(u, ur)

at
- (ut, /0 t k(s)n(t, s) ds).

Now, we need to estimate three terms on the right-hand side of (4.8). The Cauchy-
Schwarz, Poincaré inequalities and assumption (A) imply for all ¢ > o > 0

(149) (K0 (1, 1)) < IVl + CoR () 1)

< JIVul? + CH D)t 1),
(4.10) [ o) st < JI9u + IR o el
and

t 1 C t
i) ([ e ds) < gl + Skl [ Intes)l? a6)

A combination of (4.9), (4.10) and (4.11) with (4.8) yields

d

3 2 2 3 3 2 2
=0(t) < = FN9ulP + [Vual® + (5 + TCIR B e, ) el

2

3 C k
+ R OO + Sl [ Il 4K (o)
which proves the claim. O
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Lemma 4.3. The functional

w(r) = - (u / K(n(t, ) ds ) -3 | F ) ds = kO (el

(Vut, /0 k() Vn(t. ) ds)

- 5/0( "(NIV(t, ) ds — k(@) Vn(t, )]

ts

satisfies along the solution for any § > 0
d 2y c 2 2 ! 2 11/
(4.12) —U(t) < 8lluel® + = (=K' @) In(t, )" - k ) ds|lul|® + In(t, s)|I” dk

S n <t>>|\Vn<t7t>H2

(K@)t t>||2+6|\w|\2 m

2
1 1
- [rrasivut®+ 3 [ Iva )l ak + 5K @)vate ol
C t
+ 8Vl + 5K [ 19n(t3) A (o)
C ¢ C
+ Gl [ It P () + S H O) (e

C t
+5||k||i1<u;e+>|\wll2+El\kl\m(m)/o In(t, s)|I* dk'(s).

Proof. Multiplying (1.1) by fo n(t, s) ds, integrating on 2 along the solu-
tion and performing straightforward calculatlons we obtain

(4.13) <utt, /Ot k(s)n(t, s) ds> jt (ut, /t k(s)n(t, s) ds)
o [ kmienas).

By making use of Leibniz’s rule, the right-hand side of (4.13) can also be expressed

in the form

(1 [ womtes)as) = & ([ wtsice ds) — (KO8, 1)
(o [ )

_ di<u n(t, ) ds ) — (e, K((8, 1)

~

— (g, ug(t ))/O k(s)ds + (ug, k * uy).
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Using
(k) = 5 (5 [ CREnes)1? as+ ko lnce.01?)

+ %/0 In(t, )| dk’ + %(—k'(t>>|\n(t,t)||27

(s [ K5y as) = 3 (wn, [ wGoimts)as)

— (g, K()(E, ) — / k(s) ds |

we get

+ 55 [ R as+ kol ol?)
3 [ Ik + SR @)l o
Similarly, we obtain
t d t
(Vutt,/o k(s)Vn(t,s) ds) = E(Vut,/o kE(s)Vn(t,s) ds)
~ (Fur K(OTn(t0) = [ k(s) | T
+ 5 (5 [ CHOITHE P as bVt ol
+3 [ Ivne )P ak + S )IVate. ol

Therefore the functional

w0)i= = (e [ Kt ds) = 5 [ ROl s - KOl

1 t 2 t
+§ /0 k(s)n(t,s)ds —(Vut,/o k(s)Vn(t,s)ds)
-5 | CHOITH P ds = ko Tate. 0l

fulfills the identity

GO+ (e k@0 ds) + [ ko) aslul = 5 [ e,

~ SR NI + (Vur Ot )d5) + [ k() ds[ Vel
0
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- %/0 IVn(t, )| d&' — %(—k’(ﬂ)HVﬁ(tvﬂHQ

- (ve. | ()Y, ) as) - ( k(. ) ds.kxu) =0,
In addition, invoking once more (4.5)
(/k ts)dsk:*ut)
( k(s tsds( tt—l—ut/k: ds——/kj ))
( k(s)n(t, s) ds, k(t tt) (/ksntsdsut/k )
-( / ot ds. 5 [ it o))
- (/tku (t,5) ds, (e, ))+(/Otms)n(t,s)dsvut/Otus)ds)

1d
2dt

ts

we infer

(114)  SWE) = — (u MO, 1) ds) — /k()dsnum?

w3 [ Ik + SR @0l
— (Vue, k() V(¢ 1) ds) - / (<) ds|[ Va2

+ %/0 IVn(t, s)|? d&’ + %(—k’(ﬂ)HVﬁ(tvﬂHQ

+ (v | kst ) as)+ ( k(s)n(t,5) ds, k(o )
4 (/Otk(s)n(t,s)ds,ut /Otk(s) ds).

Let us examine in detail the four terms appearing on the right-hand side of (4.14).
Using Cauchy-Schwarz inequality, we find for any ¢ > ¢ > 0

(. k(e 1) < Sl + 2 e, )2

< olluel? + j;< K@) (e, )
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(Vur, K(E)Vn(t,£) ds) < 6] V|2 + 4(’:5( K(0) | Vn(t. 1)1
(Vu [ Kevnte.s)a ) IVl + el e / (. 5)]12 A (s),
( / Ks)n(t s) ds, k(o)n(, t)) Ml / It )12 @K' () + S (<K (@) (e, )

t t t

C
</0 k(s)n(t,s) ds,ut/o k(s) ds) < 5||k||2L1(R+)||ut||2 + 4—5||k||L1(R+)/0 n(t, s)||? d&'(s).
Combining the above estimates, we easily see that for every 6 > 0

d C ¢
Lut) < dllud? + S —r @) nt. 1) - / K(s) dsflu |2 + / (e, 5)]12 &’
at 10 .

(=K ), I + 6l Vue | + Zs( "NVt )

t 1 , 1,
— [ R asivud + 3 [ 1On Ok + R @Il

|~

+

C t
+ 81w + G5l [ 1900t 8) P K (o)
g k ! Qdk/ g _k/ 2 Sk 2 2
4 GGy [ eI AR (5)+ FR O eI + 81k ol

C t
ST / (e, $)[12 4K (s),
43 o

yielding

Sty < (50 1) [ 46105 )l + (5 [ kG5)as ) 9l

LoVl + (5t g+ 5 ) K@t

1 C ¢ t

+ (54 Skl + Sl /0 In(t, )11 4K (s)
c 1, 2

+ (5 +3) K @IV
1 C ! 2 dk’

+(5+ plkle.) / IVn(, )| 4K (s).

Now, we are in position to prove the main result. For small e; > 0 and €5 > 0, we
denote by V(t) the Lyapunov functional

(4.15) Vit)=E+E+e1P(t) + e29(1).
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Exploiting Cauchy-Schwarz and Poincaré inequalities, it is easy to check that, pro-
vided €1 and e5 are small enough, there exists a constant C' > 0 depending on &
and eo such that V(t) > CE(t) (V(t) is positive definite). Combining (4.1), (4.2),
(4.3) and (4.12) with (4.15) together, we arrive at

d ' 3 3 onnl 2
GV < (22(5- [ keas) (34 2chmlie,) Yoo

t
3
+ <52 (5—/ k(s) ds) +61>||Vut|2 + (525— —61)|\Vu||2
0 4
C 1 C C 1
+ (15 Ikl 2 +22(5 + 5 Ikl + Ikl en ) = 5)
t
« [ el ars)
0
1 C C , )
+(gte(gtyts)) CHOInE
1 3 c 1 , )
(—5+4610+62(45 5)) (=K @IV, 1)]|
1 1
+ (o343 + Siblo)) [ 1909l )

for every t > to. Therefore, fixing § small such that § < 3ko/8(1 + C||k||L1([R )
ko = fo s)ds. Thus

t
6—/ k(s)ds < ——.

0 2
Once § > 0 fixed, we take €1 > 0 and €2 > 0 small enough and such that

ko
201+ Cllkl|Z1 (g, )

4
(4.16) 5562 <egp <ég

B2t e

(5+5+5) <3

and
1

3 c 1 1 1
Cra(gry) <1 = 45”"’”“‘“”) 1
Therewith (4.16) imply that

t
3 3 9 3
E9 (5 —/0 k(s) dS) +é1 (5 + ZCHkHLl(R+)) <0, e90— 161 < 0.
We then end up with
(4.17) —V(t) < =CE(t), t=to.
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Integrating both sides of (4.17) on (tg,t), we get

V(t) = V(to) < —c/t E(s)ds,

which yields that

/t E(s)ds < %V(to).

(4]

We recall that from (4.1), E(t) is decreasing. Thus, we have

%(tE(t)) — B(t) +tE'(t) < B(t).

Performing an integration over (to,t), we deduce

t

LE(t) — toE(to) < / B(s)ds < £V (o),

which implies that for any ¢ > tg

(4.18) E(t) <

=+ Q

for some positive constant C'. On the other hand, we have

(4.19) tE(t) < toE(0) on [0, to)-

Hence, we deduce from (4.18) and (4.19)

E(t) < 1 for any t > 0,
which is exactly the desired inequality in Theorem 3.2. O
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