[1] Babuška, I., Nobile, F., Tempone, R.:
A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45 (2007), 1005-1034.
DOI 10.1137/050645142 |
MR 2318799 |
Zbl 1151.65008
[6] Béreš, M.:
An efficient reduced basis construction for stochastic Galerkin matrix equations using deflated conjugate gradients. AETA 2018-Recent Advances in Electrical Engineering and Related Sciences: Theory and Application I. Zelinka et al. Lecture Notes in Electrical Engineering 554, Springer, Cham (2019), 175-184.
DOI 10.1007/978-3-030-14907-9_18
[7] Béreš, M., Domesová, S.:
The stochastic Galerkin method for Darcy flow problem with log-normal random field coefficients. Advances in Electrical and Electronic Engineering 15 (2017), 13 pages.
DOI 10.15598/aeee.v15i2.2280
[11] Chen, C. S., Hon, Y. C., Schaback, R. A.: Scientific Computing with Radial Basis Functions. Department of Mathematics, University of Southern Mississippi, Hattiesburg (2005).
[12] Chen, Y., Jiang, J., Narayan, A.:
A robust error estimator and a residual-free error indicator for reduced basis methods. Comput. Math. Appl. 77 (2019), 1963-1979.
DOI 10.1016/j.camwa.2018.11.032 |
MR 3926856
[18] Dolgov, S., Khoromskij, B. N., Litvinenko, A., Matthies, H. G.:
Polynomial chaos expansion of random coefficients and the solution of stochastic partial differential equations in the tensor train format. SIAM/ASA J. Uncertain. Quantif. 3 (2015), 1109-1135.
DOI 10.1137/140972536 |
MR 3418232 |
Zbl 1329.65271
[20] Freeze, R. A.:
A stochastic-conceptual analysis of one-dimensional groundwater flow in nonuniform homogeneous media. Water Resources Research 11 (1975), 725-741.
DOI 10.1029/WR011i005p00725
[24] Hoeksema, R. J., Kitanidis, P. K.:
Analysis of the spatial structure of properties of selected aquifers. Water Resources Research 21 (1985), 563-572.
DOI 10.1029/WR021i004p00563
[26] Keese, A., Mathhies, H. G.: Adaptivity and sensitivity for stochastic problems. Computational Stochastic Mechanics 4 P. D. Spanos et al. Millpress, Rotterdam (2003), 311-316.
[29] Lee, K., Elman, H. C.:
A preconditioned low-rank projection method with a rank-reduction scheme for stochastic partial differential equations. SIAM J. Sci. Comput. 39 (2017), S828--S850.
DOI 10.1137/16M1075582 |
MR 3716585 |
Zbl 1373.60126
[33] Nelson, P. H.: Permeability-porosity relationships in sedimentary rocks. Log Analyst 35 (1994), 38-62.
[34] Newsum, C. J., Powell, C. E.:
Efficient reduced basis methods for saddle point problems with applications in groundwater flow. SIAM/ASA J. Uncertain. Quantif. 5 (2017), 1248-1278.
DOI 10.1137/16M1108856 |
MR 3732952 |
Zbl 1398.65282
[35] Nobile, F., Tempone, R., Webster, C. G.:
A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46 (2008), 2309-2345.
DOI 10.1137/060663660 |
MR 2421037 |
Zbl 1176.65137
[37] Nouy, A.:
Construction of generalized spectral bases for the approximate resolution of stochastic problems. Mecanique et Industries 8 (2007), 283-288.
DOI 10.1051/meca:2007050
[38] Nouy, A.:
Generalized spectral decomposition method for solving stochastic finite element equations: Invariant subspace problem and dedicated algorithms. Comput. Methods Appl. Mech. Eng. 197 (2008), 4718-4736.
DOI 10.1016/j.cma.2008.06.012 |
MR 2464512 |
Zbl 1194.74458
[43] Powell, M. J. D.:
Radial basis function methods for interpolation to functions of many variables. HERCMA 2001. Proceedings of the 5th Hellenic-European Conference on Computer Mathematics and Its Applications E. A. Lipitakis LEA, Athens (2002), 2-24.
Zbl 1048.65502
[47] Pultarová, I.:
Hierarchical preconditioning for the stochastic Galerkin method: Upper bounds to the strengthened CBS constants. Comput. Math. Appl. 71 (2016), 949-964.
DOI 10.1016/j.camwa.2016.01.006 |
MR 3461271
[51] Simoncini, V.:
Analysis of the rational Krylov subspace projection method for large-scale algebraic Riccati equations. SIAM J. Matrix Anal. Appl. 37 (2016), 1655-1674.
DOI 10.1137/16M1059382 |
MR 3570279 |
Zbl 06655499
[52] Sousedík, B., Ghanem, R. G., Phipps, E. T.:
Hierarchical Schur complement preconditioner for the stochastic Galerkin finite element methods. Numer. Linear Algebra Appl. 21 (2014), 136-151.
DOI 10.1002/nla.1869 |
MR 3150614 |
Zbl 1324.65045