Previous |  Up |  Next

Article

Keywords:
first countable; discrete countable chain condition; zeroset diagonal; cardinal
Summary:
We say that a space $X$ has the discrete countable chain condition (DCCC for short) if every discrete family of nonempty open subsets of $X$ is countable. A space $X$ has a zeroset diagonal if there is a continuous mapping $f\colon X^2 \rightarrow [0,1]$ with $\Delta _X=f^{-1}(0)$, where $\Delta _X=\{(x,x)\colon x\in X\}$. In this paper, we prove that every first countable DCCC space with a zeroset diagonal has cardinality at most $\mathfrak c$.
References:
[1] Arhangel'skii, A. V., Buzyakova, R. Z.: The rank of the diagonal and submetrizability. Commentat. Math. Univ. Carol. 47 (2006), 585-597. MR 2337413 | Zbl 1150.54335
[2] Buzyakova, R. Z.: Observations on spaces with zeroset or regular $G_\delta$-diagonals. Commentat. Math. Univ. Carol. 46 (2005), 469-473. MR 2174525 | Zbl 1121.54051
[3] Buzyakova, R. Z.: Cardinalities of ccc-spaces with regular $G_\delta$-diagonals. Topology Appl. 153 (2006), 1696-1698. DOI 10.1016/j.topol.2005.06.004 | MR 2227022 | Zbl 1094.54001
[4] Engelking, R.: General Topology. Sigma Series in Pure Mathematics 6. Heldermann, Berlin (1989). MR 1039321 | Zbl 0684.54001
[5] Ginsburg, J., Woods, R. G.: A cardinal inequality for topological spaces involving closed discrete sets. Proc. Am. Math. Soc. 64 (1977), 357-360. DOI 10.2307/2041457 | MR 0461407 | Zbl 0398.54002
[6] Gotchev, I. S.: Cardinalities of weakly Lindelöf spaces with regular $G_\kappa$-diagonals. Available at https://arxiv.org/abs/1504.01785 (2015). MR 3958260
[7] Hodel, R. E.: Cardinal function. I. Handbook of Set-Theoretic Topology North-Holland, Amsterdam (1984), 1-61 K. Kunen et al. DOI 10.1016/c2009-0-12309-7 | MR 0776620 | Zbl 0559.54003
[8] Shakhmatov, D.: No upper bound for cardinalities of Tychonoff c.c.c. spaces with a $G_\delta$-diagonal exists. An answer to J. Ginsburg and R. G. Woods' question. Commentat. Math. Univ. Carol. 25 (1984), 731-746. MR 0782022 | Zbl 0572.54003
[9] Uspenskij, V. V.: A large $F_{\sigma}$-discrete Fréchet space having the Souslin property. Commentat. Math. Univ. Carol. 25 (1984), 257-260. MR 0768812 | Zbl 0553.54001
[10] Wage, M. L., Fleissner, W. G., Reed, G. M.: Normality versus countable paracompactness in perfect spaces. Bull. Am. Math. Soc. 82 (1976), 635-639. DOI 10.1090/S0002-9904-1976-14150-X | MR 0410665 | Zbl 0332.54018
Partner of
EuDML logo