Previous |  Up |  Next

Article

Keywords:
completely regular semigroup; lattice; variety; $\cap $-subsemilattice
Summary:
Completely regular semigroups are unions of their (maximal) subgroups with the unary operation within their maximal subgroups. As such they form a variety whose lattice of subvarieties is denoted by $\mathcal L(\mathcal C\mathcal R)$. \endgraf We construct a 60-element $\cap $-subsemilattice and a 38-element sublattice of $\mathcal L(\mathcal C\mathcal R)$. The bulk of the paper consists in establishing the necessary joins for which it uses Polák's theorem.
References:
[1] Hall, T. E., Jones, P. R.: On the lattice of varieties of bands of groups. Pac. J. Math. 91 (1980), 327-337. DOI 10.2140/pjm.1980.91.327 | MR 0615681 | Zbl 0419.20043
[2] Jones, P. R.: Mal'cev products of varieties of completely regular semigroups. J. Aust. Math. Soc., Ser. A 42 (1987), 227-246. DOI 10.1017/S1446788700028226 | MR 0869748 | Zbl 0613.20038
[3] Liu, G., Zhang, J.: A problem on central cryptogroups. Semigroup Forum 73 (2006), 261-266. DOI 10.1007/s00233-006-0619-0 | MR 2280823 | Zbl 1114.20034
[4] Pastijn, F.: The lattice of completely regular semigroup varieties. J. Aust. Math. Soc., Ser. A 49 (1990), 24-42. DOI 10.1017/S1446788700030214 | MR 1054080 | Zbl 0706.20042
[5] Petrich, M.: Varieties of orthodox bands of groups. Pac. J. Math. 58 (1975), 209-217. DOI 10.2140/pjm.1975.58.209 | MR 0382522 | Zbl 0317.20042
[6] Petrich, M.: On the varieties of completely regular semigroups. Semigroup Forum 25 (1982), 153-169. DOI 10.1007/BF02573595 | MR 0663176 | Zbl 0502.20034
[7] Petrich, M.: A lattice of varieties of completely regular semigroups. Commun. Algebra 42 (2014), 1397-1413. DOI 10.1080/00927872.2012.667181 | MR 3169638 | Zbl 1302.20059
[8] Petrich, M.: Certain relations on a lattice of varieties of completely regular semigroups. Commun. Algebra 43 (2015), 4080-4096. DOI 10.1080/00927872.2014.907412 | MR 3366561 | Zbl 1339.20053
[9] Petrich, M.: Some relations on a semilattice of varieties of completely regular semigroups. Semigroup Forum 93 (2016), 607-628. DOI 10.1007/s00233-016-9817-6 | MR 3572420 | Zbl 06688592
[10] Petrich, M., Reilly, N. R.: Semigroups generated by certain operators on varieties of completely regular semigroups. Pac. J. Math. 132 (1988), 151-175. DOI 10.2140/pjm.1988.132.151 | MR 0929587 | Zbl 0598.20061
[11] Petrich, M., Reilly, N. R.: Operators related to $E$-disjunctive and fundamental completely regular semigroups. J. Algebra 134 (1990), 1-27. DOI 10.1016/0021-8693(90)90207-5 | MR 1068411 | Zbl 0706.20043
[12] Petrich, M., Reilly, N. R.: Operators related to idempotent generated and monoid completely regular semigroups. J. Aust. Math. Soc., Ser. A 49 (1990), 1-23. DOI 10.1017/s1446788700030202 | MR 1054079 | Zbl 0708.20019
[13] Petrich, M., Reilly, N. R.: Completely Regular Semigroups. Canadian Mathematical Society Series of Monographs and Advanced Texts 23. Wiley, Chichester (1999). MR 1684919 | Zbl 0967.20034
[14] Polák, L.: On varieties of completely regular semigroups. I. Semigroup Forum 32 (1985), 97-123. DOI 10.1007/BF02575527 | MR 0803483 | Zbl 0564.20034
[15] Polák, L.: On varieties of completely regular semigroups. II. Semigroup Forum 36 (1987), 253-284. DOI 10.1007/BF02575021 | MR 0916425 | Zbl 0638.20032
[16] Reilly, N. R.: Varieties of completely regular semigroups. J. Aust. Math. Soc., Ser. A 38 (1985), 372-393. DOI 10.1017/S144678870002365X | MR 0779201 | Zbl 0572.20040
[17] Trotter, P. G.: Subdirect decompositions of the lattice of varieties of completely regular semigroups. Bull. Aust. Math. Soc. 39 (1989), 343-351. DOI 10.1017/S0004972700003269 | MR 0995132 | Zbl 0661.20039
Partner of
EuDML logo