Previous |  Up |  Next

Article

Keywords:
generalized Fibonacci number; Fermat number, linear form in logarithms; reduction method
Summary:
Using the lower bound of linear forms in logarithms of Matveev and the theory of continued fractions by means of a variation of a result of Dujella and Pethő, we find all $k$-Fibonacci and $k$-Lucas numbers which are Fermat numbers. Some more general results are given.
References:
[1] Bravo, E. F., Bravo, J. J., Luca, F.: Coincidences in generalized Lucas sequences. Fibonacci Q. 52 (2014), 296-306. MR 3276052 | Zbl 1375.11014
[2] Bravo, J. J., Gómez, C. A., Luca, F.: Powers of two as sums of two $k$-Fibonacci numbers. Miskolc Math. Notes 17 (2016), 85-100. DOI 10.18514/MMN.2016.1505 | MR 3527869 | Zbl 1389.11041
[3] Bravo, J. J., Luca, F.: Powers of two in generalized Fibonacci sequences. Rev. Colomb. Mat. 46 (2012), 67-79. MR 2945671 | Zbl 1353.11020
[4] Bravo, J. J., Luca, F.: On a conjecture about repdigits in $k$-generalized Fibonacci sequences. Publ. Math. 82 (2013), 623-639. DOI 10.5486/PMD.2013.5390 | MR 3066434 | Zbl 1274.11035
[5] Bravo, J. J., Luca, F.: Repdigits in $k$-Lucas sequences. Proc. Indian Acad. Sci., Math. Sci. 124 (2014), 141-154. DOI 10.1007/s12044-014-0174-7 | MR 3218885 | Zbl 1382.11019
[6] Dresden, G. P., Du, Z.: A simplified Binet formula for $k$-generalized Fibonacci numbers. J. Integer Seq. 17 (2014), Article No. 14.4.7, 9 pages. MR 3181762 | Zbl 1360.11031
[7] Dujella, A., Pethő, A.: A generalization of a theorem of Baker and Davenport. Quart. J. Math., Oxf. II. Ser. 49 (1998), 291-306. DOI 10.1093/qjmath/49.195.291 | MR 1645552 | Zbl 0911.11018
[8] Finkelstein, R.: On Fibonacci numbers which are more than a square. J. Reine Angew. Math. 262/263 (1973), 171-178. DOI 10.1515/crll.1973.262-263.171 | MR 0325511 | Zbl 0265.10008
[9] Finkelstein, R.: On Lucas numbers which are one more than a square. Fibonacci Q. 136 (1975), 340-342. MR 0422134 | Zbl 0319.10011
[10] Hua, L. K., Wang, Y.: Applications of Number Theory to Numerical Analysis. Springer, Berlin; Science Press, Beijing (1981). MR 0617192 | Zbl 0451.10001
[11] Luca, F.: Fibonacci and Lucas numbers with only one distinct digit. Port. Math. 57 (2000), 243-254. MR 1759818 | Zbl 0958.11007
[12] Marques, D.: On $k$-generalized Fibonacci numbers with only one distinct digit. Util. Math. 98 (2015), 23-31. MR 3410879 | Zbl 1369.11014
[13] Matveev, E. M.: An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers II. Izv. Math. 64 (2000), 1217-1269 translated from Izv. Ross. Akad. Nauk Ser. Mat. 64 2000 125-180. DOI 10.1070/IM2000v064n06ABEH000314 | MR 1817252 | Zbl 1013.11043
[14] Noe, T. D., Post, J. Vos: Primes in Fibonacci $n$-step and Lucas $n$-step sequences. J. Integer Seq. 8 (2005), Article No. 05.4.4, 12 pages. MR 2165333 | Zbl 1101.11008
[15] Wolfram, D. A.: Solving generalized Fibonacci recurrences. Fibonacci Q. 36 (1998), 129-145. MR 1622060 | Zbl 0911.11014
Partner of
EuDML logo