Previous |  Up |  Next

Article

Keywords:
plane curve; space curve; general-affine group; general-affine curvature; variational problem
Summary:
We present a fundamental theory of curves in the affine plane and the affine space, equipped with the general-affine groups ${\rm GA}(2)={\rm GL}(2,{\mathbb R})\ltimes {\mathbb R}^2$ and ${\rm GA}(3)={\rm GL}(3,{\mathbb R})\ltimes {\mathbb R}^3$, respectively. We define general-affine length parameter and curvatures and show how such invariants determine the curve up to general-affine motions. We then study the extremal problem of the general-affine length functional and derive a variational formula. We give several examples of curves and also discuss some relations with equiaffine treatment and projective treatment of curves.
References:
[1] Bagderina, Y. Y.: Equivalence of third-order ordinary differential equations to Chazy equations I--XIII. Stud. Appl. Math. 120 (2008), 293-332. DOI 10.1111/j.1467-9590.2008.00400.x | MR 2406822 | Zbl 1196.34047
[2] Berzolari, L.: Sugli invarianti differenziali proiettivi delle curve di un iperspazio. Annali di Math., Ser 2 Italian 26 (1897), 1-58 \99999JFM99999 28.0584.04. DOI 10.1007/BF02346203
[3] Blaschke, W.: Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie. II. Affine Differentialgeometrie, bearbeitet von K. Reidemeister. Springer, Berlin German (1923),\99999JFM99999 49.0499.01. MR 0015247
[4] Bol, G.: Projektive Differentialgeometrie. I. Teil. Vandenhoeck & Ruprecht, Göttingen German (1950). MR 0034066 | Zbl 0035.23401
[5] Calugareanu, G., Gheorghiu, G. T.: Sur l'interprétation géométrique des invariants différentiels fondamentaux en géométrie affine et projective des courbes planes. Bull. Math. Soc. Roum. Sci. 43 French (1941), 69-83. MR 0012877 | Zbl 0060.36603
[6] Cartan, E.: Sur un problème du calcul des variations en géométrie projective plane. Moscou, Rec. Math. 34 French (1927), 349-364 \99999JFM99999 53.0486.01.
[7] Cartan, E.: Lecons sur la théorie des espaces à connexion projective. Cahiers scient. 17, Gauthier-Villars. VI, Paris French (1937). MR 0041456 | Zbl 0016.07603
[8] Chazy, J.: Sur les équations différentielles du troisième ordre et d'ordre supérieur dont l'intégrale générale a ses points critiques fixes. Acta Math. 34 French (1911), 317-385 \99999JFM99999 42.0340.03. DOI 10.1007/BF02393131 | MR 1555070
[9] Chou, K.-S., Qu, C.: Integrable equations arising from motions of plane curves. Physica D 162 (2002), 9-33. DOI 10.1016/S0167-2789(01)00364-5 | MR 1882237 | Zbl 0987.35139
[10] Fubini, G., Čech, E.: Introduction à la géométrie projective différentielle des surfaces. Gauthier-Villars and Cie VI, Paris French (1931). MR 1562218 | Zbl 0005.31102
[11] Griffiths, P. A.: Exterior Differential Systems and the Calculus of Variations. Progress in Mathematics 25, Birkhäuser/Springer, Basel (1983). DOI 10.1007/978-1-4615-8166-6 | MR 0684663 | Zbl 0512.49003
[12] Halphen, G. H.: Sur les invariants différentielles. Oeuvre II Gauthier-Villars, Paris French (1918), 197-257 \99999JFM99999 46.1418.01.
[13] Izumiya, S., Sano, T.: Generic affine differential geometry of plane curves. Proc. Edinb. Math. Soc., II. Ser. 41 (1998), 315-324. DOI 10.1017/S0013091500019672 | MR 1626425 | Zbl 0965.53013
[14] Kimpara, M.: Sur les problèmes du calcul des variations en géométrie différentielle projective des courbes gauches. Proc. Phys.-Math. Soc. Japan, III. Ser. 19 French (1937), 977-983. DOI 10.11429/ppmsj1919.19.0_977 | Zbl 0018.08802
[15] Lane, E. P.: A Treatise on Projective Differential Geometry. University of Chicago Press, Chicago (1942). MR 0007286 | Zbl 0063.03443
[16] Beffa, G. Marí: Hamiltonian evolution of curves in classical affine geometries. Physica D 238 (2009), 100-115. DOI 10.1016/j.physd.2008.08.009 | MR 2571970 | Zbl 1163.37023
[17] Mihăilescu, T.: Géométrie différentielle affine des courbes planes. Czech. Math. J. 9 French (1959), 265-288. MR 0105704 | Zbl 0089.17002
[18] Mihăilescu, T.: Sobre la variacion del arco afin de las curvas planas. Math. Notae 17 Spanish (1961), 59-81. MR 0146691 | Zbl 0108.34202
[19] Mihăilescu, T.: Geometria diferencial afin general de las curvas alabeadas. Math. Notae 18 Spanish (1963), 23-70. MR 0156269 | Zbl 0114.37102
[20] Monge, G.: Sur les équations différentielles des courbes du second degré. Corresp. sur l'École imp. Polytechnique Klostermann, Paris M. Hachette French (1810), 51-54.
[21] Musso, E.: Motions of curves in the projective plane inducing the Kaup-Kupershmidt hierarchy. SIGMA, Symmetry Integrability Geom. Methods Appl. 8 (2012), paper 030, 20 pages. DOI 10.3842/SIGMA.2012.030 | MR 2942809 | Zbl 1246.53012
[22] Musso, E., Grant, J. D. E.: Coisotropic variational problems. J. Geom. Phys. 50 (2004), 303-338. DOI 10.1016/j.geomphys.2003.10.005 | MR 2078230 | Zbl 1076.58011
[23] Musso, E., Nicolodi, L.: Reduction for the projective arclength functional. Forum Math. 17 (2005), 569-590. DOI 10.1515/form.2005.17.4.569 | MR 2154420 | Zbl 1084.53012
[24] Nomizu, K., Sasaki, T.: Affine Differential Geometry. Cambridge Tracts in Mathematics 111, Cambridge University Press, Cambridge (1994). MR 1311248 | Zbl 0834.53002
[25] Olver, P. J., Sapiro, G., Tannenbaum, A.: Classification and uniqueness of invariant geometric flows. C. R. Acad. Sci., Paris, Sér. I 319 (1994), 339-344. MR 1289308 | Zbl 0863.53008
[26] Ovsienko, V., Tabachnikov, S.: Projective Differential Geometry Old and New. From the Schwarzian Derivative to the Cohomology of Diffeomorphism Groups. Cambridge Tracts in Mathematics 165, Cambridge University Press, Cambridge (2005). DOI 10.1017/CBO9780511543142 | MR 2177471 | Zbl 1073.53001
[27] Polyanin, A. D., Zaitsev, V. F.: Handbook of Exact Solutions for Ordinary Differential Equations. CRC Press, Boca Raton (1995). DOI 10.1201/9781420035339 | MR 1396087 | Zbl 0855.34001
[28] Sasaki, S.: Contributions to the affine and projective differential geometries of space curves. Jap. J. Math. 13 (1937), 473-481. DOI 10.4099/jjm1924.13.0_473 | Zbl 0018.17003
[29] Sasaki, T.: Projective Differential Geometry and Linear Homogeneous Differential Equations. Rokko Lectures in Mathematics 5, Kobe University (1999).
[30] Schirokow, P. A., Schirokow, A. P.: Affine Differentialgeometrie. B. G. Teubner, Leipzig German (1962). MR 0150666 | Zbl 0106.14703
[31] Thorbergsson, G., Umehara, M.: Sextactic points on a simple closed curve. Nagoya Math. J. 167 (2002), 55-94. DOI 10.1017/S0027763000025435 | MR 1924719 | Zbl 1088.53049
[32] Verpoort, S.: Curvature functionals for curves in the equi-affine plane. Czech. Math. J. 61 (2011), 419-435. DOI 10.1007/s10587-011-0064-4 | MR 2905414 | Zbl 1249.49028
[33] Wilczynski, E. J.: Projective Differential Geometry of Curves and Ruled Surfaces. B. G. Teubner, Leipzig German (1906),\99999JFM99999 37.0620.02. DOI 10.1007/BF01736764 | MR 0131232
Partner of
EuDML logo