Article
Keywords:
elliptic curve; congruent number problem; Selmer group
Summary:
We determine the distribution over square-free integers $n$ of the pair $(\dim _{\mathbb {F}_2}{\rm Sel}^\Phi (E_n/\mathbb {Q}),\dim _{\mathbb {F}_2} {\rm Sel}^{\widehat {\Phi }}(E_n'/\mathbb {Q}))$, where $E_n$ is a curve in the congruent number curve family, $E_n'\colon y^2=x^3+4n^2x$ is the image of isogeny $\Phi \colon E_n\rightarrow E_n'$, $\Phi (x,y)=(y^2/x^2,y(n^2-x^2)/x^2)$, and $\widehat {\Phi }$ is the isogeny dual to $\Phi $.
References:
[7] Kane, D., Klagsbrun, Z.:
On the joint distribution of $ Sel_\Phi (E/\mathbb{Q})$ and $ Sel_{\widehat{\Phi}}(E'/\mathbb{Q})$ in quadratic twist families. Available at
https://arxiv.org/abs/1702.02687v1 (2007), 25 pages.