Previous |  Up |  Next

Article

Keywords:
majorization; linear preserver; doubly stochastic matrix
Summary:
Let $\mathbb {M}_{n,m}$ be the set of all $n\times m$ real or complex matrices. For $A,B\in \mathbb {M}_{n,m}$, we say that $A$ is row-sum majorized by $B$ (written as $A\prec ^{\rm rs} B$) if $R(A)\prec R(B)$, where $R(A)$ is the row sum vector of $A$ and $\prec $ is the classical majorization on $\mathbb {R}^n$. In the present paper, the structure of all linear operators $T\colon \mathbb {M}_{n,m}\rightarrow \mathbb {M}_{n,m}$ preserving or strongly preserving row-sum majorization is characterized. Also we consider the concepts of even and circulant majorization on $\mathbb {R}^n$ and then find the linear preservers of row-sum majorization of these relations on $\mathbb {M}_{n,m}$.
References:
[1] Ando, T.: Majorization, doubly stochastic matrices, and comparison of eigenvalues. Linear Algebra Appl. 118 (1989), 163-248. DOI 10.1016/0024-3795(89)90580-6 | MR 0995373 | Zbl 0673.15011
[2] Armandnejad, A., Heydari, H.: Linear preserving $gd$-majorization functions from $M_{n,m}$ to $M_{n,k}$. Bull. Iran. Math. Soc. 37 (2011), 215-224. MR 2850115 | Zbl 1237.15021
[3] Bhatia, R.: Matrix Analysis. Graduate Texts in Mathematics 169, Springer, New York (1997). DOI 10.1007/978-1-4612-0653-8 | MR 1477662 | Zbl 0863.15001
[4] Hasani, A. M., Radjabalipour, M.: The structure of linear operators strongly preserving majorizations of matrices. Electron. J. Linear Algebra 15 (2006), 260-268. DOI 10.13001/1081-3810.1236 | MR 2255479 | Zbl 1145.15003
[5] Motlaghian, S. M., Armandnejad, A., Hall, F. J.: Linear preservers of Hadamard majorization. Electron. J. Linear Algebra 31 (2016), 593-609. DOI 10.13001/1081-3810.3281 | MR 3578394 | Zbl 1347.15005
[6] Soleymani, M., Armandnejad, A.: Linear preservers of circulant majorization on $\mathbb{R}^n$. Linear Algebra Appl. 440 (2014), 286-292. DOI 10.1016/j.laa.2013.10.040 | MR 3134271 | Zbl 1286.15033
[7] Soleymani, M., Armandnejad, A.: Linear preservers of even majorization on $M_{n,m}$. Linear Multilinear Algebra 62 (2014), 1437-1449. DOI 10.1080/03081087.2013.832487 | MR 3261749 | Zbl 1309.15045
Partner of
EuDML logo