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Abstract. Let Mn,m be the set of all n×m real or complex matrices. For A,B ∈ Mn,m,
we say that A is row-sum majorized by B (written as A ≺

rs B) if R(A) ≺ R(B), where R(A)
is the row sum vector of A and ≺ is the classical majorization on R

n. In the present paper,
the structure of all linear operators T : Mn,m → Mn,m preserving or strongly preserving
row-sum majorization is characterized. Also we consider the concepts of even and circulant
majorization on R

n and then find the linear preservers of row-sum majorization of these
relations on Mn,m.
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1. Introduction

In the recent years, the concept of majorization has been widely applied to the

related research areas of mathematics and statistics. Although this concept is rather

old, it is an active field of research and recently many papers in this topic have

been published, see for example [4], [5], [6], [7]. The following notation will be fixed

throughout the paper: Mn,m is the set of all n × m matrices with entries in R,

Mn := Mn,n. The set of all n× 1 column vectors is denoted by Rn. The symbol Nk

is used for the set {1, . . . , k}. The symbol ei is the row (or column) vector with 1 as

the ith component and 0 elsewhere. Eij is the n×m matrix whose (i, j) entry is one

and all other entries are zero. The summation of all components of a vector x in Rn

is denoted by tr(x). The symbol [x1 | x2 | . . . | xm] is used for the n×m matrix whose

columns are x1, x2, . . . , xm ∈ R
n. A[i] ∈ Mn−1 is the principal submatrix of A ∈ Mn

obtained by deleting the ith row and the ith column of A. The letter J stands for the

(rank-1) square matrix all of whose entries are 1. Let ∼ be a relation onMn,m. A lin-

ear operator T : Mn,m → Mn,m is said to be a linear preserver (or strong linear pre-

server) of ∼ if TX ∼ TY whenever X ∼ Y (or TX ∼ TY if and only if X ∼ Y ). For

DOI: 10.21136/CMJ.2019.0084-18 1111

http://dx.doi.org/10.21136/CMJ.2019.0084-18


an n×m matrix A we define the row sum vector R(A) = (r1(A), r2(A), . . . , rn(A))
t

where ri(A) =
m
∑

j=1

aij for i = 1, . . . , n. The set of all n×n permutation matrices is de-

noted by Pn. A nonnegative matrixR ∈ Mn,m is called row stochastic if Re = e where

e = (1, 1, . . . , 1)t. An n×n matrix D is called doubly stochastic if both D and Dt are

row stochastic. The collection of all n×n doubly stochastic matrices is denoted by Dn.

A real matrix D ∈ Mn is called even doubly stochastic if it is a convex combination

of even permutation matrices. Let v = (v1, . . . , vn)
t be a vector in R

n. The shift

operator T : R
n → R

n is defined by T (v) = (vn, v1, . . . , vn−1)
t. The circulant matrix

associated to v is the matrix whose kth column is given by T k−1v (k ∈ Nn), where T

is the shift operator. If v = ei for some 1 6 i 6 n, then the circulant matrix asso-

ciated to v is a permutation matrix which is called a circulant permutation matrix.

In the present paper Q1 is the circulant permutation matrix associated to e2 and

Qk = Qk
1 for every k ∈ Nn. Up to now, various kinds of majorization have been

introduced. All types of majorization that we are dealing with in this paper are

summarized in the following definition:

Definition 1.1. Let x, y ∈ R
n. We define:

(1) classicalmajorization: x ≺ y if x = Dy for some doubly stochastic matrix

D ∈ Dn;

(2) evenmajorization: x ≺e y if x = Dy for some even doubly stochastic matrix

D ∈ Dn;

(3) circulantmajorization: x ≺c y if x = Dy for some circulant doubly stochastic

matrix D ∈ Dn.

Now, we introduce the relation of row-sum majorization on Mn,m with respect

to ≺, ≺e and ≺c as follows:

Definition 1.2. Let A,B ∈ Mn,m. The matrix A is said to be

(1) row-sum majorized by B (denoted by A ≺rs B) if R(A) ≺ R(B);

(2) row-sum evenmajorized by B (denoted by A ≺rs
e B) if R(A) ≺e R(B);

(3) row-sum circulantmajorized by B (denoted by A ≺rs
c B) if R(A) ≺c R(B).

The main aim of this paper is to characterize all linear and strong linear preservers

of row-sum majorization on Mn,m with respect to ≺, ≺e and ≺c.

2. Row-sum majorization on Mn,m

In this section we characterize all linear operators that preserve (or strongly pre-

serve) row-sum majorization onMn,m. First, we state the statements that we need to

prove the main results of this paper. The following elementary properties of classical

majorization are proved in [3].
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Proposition 2.1. For all x, y ∈ R
n the following assertions are true.

(1) If x ≺ y, then min y 6 minx 6 maxx 6 max y, where maxx and minx denote

the maximum and minimum values of the components of a given real vector x,

respectively.

(2) x ≺ y if and only if (x, α) ≺ (y, α), where α is the maximum value of the

components of the vectors x and y.

In [1], Ando characterized all linear preservers of classical majorization on Rn. In

fact he proved the following proposition.

Proposition 2.2 ([2], Corollary 2.7). Let T : R
n → R

n be a linear operator.

Then T preserves classical majorization if and only if one of the following holds:

(i) T (x) = tr(x)a for some a ∈ R
n.

(ii) T (x) = αPx + βJx for some α, β ∈ R, and P ∈ Pn.

The following lemma that states an interesting fact about a vector a ∈ R
n, is used

to prove the main results.

Lemma 2.3. Let a = (a1, . . . , an)
t ∈ R

n and P ∈ Pn. Then 2a ≺ a + Pa if and

only if Pa = a.

P r o o f. The sufficiency is obvious. We prove the necessity by induction on n.

If n = 1, it is clear that Pa = a. If n = 2, then P = I or P =
(

0 1

1 0

)

. The case

P = I is clear, so assume that P =
(

0 1

1 0

)

. Since 2a ≺ a + Pa,
(

2a1

2a2

)

≺
(

a1+a2

a1+a2

)

,

and by Proposition 2.1, a1 = a2 and hence Pa = a.

Now, suppose that n > 2, and that for k = 1, 2, . . . , n− 1, the assertion has been

proved. Let Pa = (ai1 , ai2 , . . . , ain) and let at = max{a1, a2, . . . , an}. The maximum

value of the vector a is at, therefore 2at > ak + aik , for every k ∈ Nn. On the other

hand 2a ≺ a+Pa and by Proposition 2.1, max(2a) 6 max(a+Pa). Therefore there

exists l ∈ Nn such that 2at 6 al + ail . Since at is the maximum value of a, we have

at = al = ail . Then without loss of generality we may assume that the (l, l)-entry

of P is 1. Put a′ = (a1, a2, . . . , al−1, al+1, . . . , an)
t ∈ R

n−1 and P ′ = P[l] ∈ Pn−1.

Thus, P ′a′ = (ai1 , ai2 , . . . , ail−1
, ail+1

, . . . , ain). Since 2a ≺ a + Pa, it follows from

Proposition 2.1, that 2a′ ≺ a′ + P ′a′, and by the induction hypothesis, P ′a′ = a′.

Now, since the (l, l)-entry of P is 1, we have Pa = a. �

IfX ≺rs Y and Y ≺rs X (or x ≺ y and y ≺ x), then we writeX ∼rs Y (respectively

x ∼ y). It is well known that x ∼ y if and only if there exists a permutation matrix P

such that x = Py.

The following remark gives the relation between R(TEij) (i ∈ Nn, j ∈ Nm) and

R(TE11) when T is a linear preserver of row-sum majorization.
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Remark 2.4. Let T : Mn,m → Mn,m be a linear preserver of row-sum majoriza-

tion. It is clear that for every i ∈ Nn, j ∈ Nm, Eij ∼rs E11. So TEij ∼rs TE11,

therefore R(TEij) ∼ R(TE11). Thus there exists Pij ∈ Pn such that R(TEij) =

PijR(TE11).

Now, we state and prove the main theorem of this section.

Theorem 2.5. Let T : Mn,m → Mn,m be a linear operator. Then T preserves

row-sum majorization if and only if there exists A ∈ Mn such that R(TX) = AR(X)

for all X ∈ Mn,m, and A has one of the following forms:

(i) A = (a | a | . . . | a) for some a ∈ R
n.

(ii) A = λP + µJ for some λ, µ ∈ R and P ∈ Pn.

P r o o f. If there exists A ∈ Mn such that R(TX) = AR(X) for all X ∈ Mn,m,

and A has one of the forms (i) or (ii), then it is easy to see that Ax ≺ Ay, whenever

x ≺ y, by Proposition 2.2. Now, let X ≺rs Y . Then R(X) ≺ R(Y ), hence AR(X) ≺

AR(Y ). Thus R(TX) ≺ R(TY ), and therefore T (X) ≺rs T (Y ).

Conversely, assume that T preserves row-sum majorization. Let α = R(TE11).

Since for every i, j (i ∈ Nn, j ∈ Nm), Eij ∼rs E11 and T preserves ≺rs, we have

R(TEij) = Pijα for some Pij ∈ Pn. So R(TX) =
∑

i,j

xijPijα where Pij ∈ Pn. Now,

we show that for every i ∈ Nn, Pijα = Pikα for all j, k ∈ Nm. Assume there exists

i ∈ Nn such that Pijα 6= Pikα, for some j, k ∈ Nm. Therefore α 6= P t
ijPikα. Let

X = 2Eij and Y = Eij + Eik. It is clear that X ≺rs Y , so we have TX ≺rs TY . It

is clear that R(TX) = 2Pijα and R(TY ) = Pijα+ Pikα. Then

T (X) ≺rs T (Y ) ⇒ R(TX) ≺ R(TY ) ⇒ 2Pijα ≺ Pijα+ Pikα ⇒ 2α ≺ α+ P t
ijPikα,

and by Lemma 2.3, P t
ijPikα = α, which is a contradiction. Therefore Pijα = Pikα

for every i ∈ Nn and j, k ∈ Nm. Set Pi = Pi1, for every i ∈ Nn. Therefore

Piα = Pi1α = Pijα for every j ∈ Nm. Thus,

R(TX) =
∑

i,j

xijPijα =
n
∑

i=1

ri(X)Piα.

Put A = [P1α | P2α | . . . | Pnα] and hence R(TX) = AR(X).

Now, define S : R
n → R

n by S(x) = Ax. First, we show that S is a linear preserver

of ≺. Let x ≺ y. Then

x ≺ y ⇒ (x | 0 | 0 | . . . | 0) ≺rs (y | 0 | 0 | . . . | 0)

⇒ T (x | 0 | 0 | . . . | 0) ≺rs T (y | 0 | 0 | . . . | 0)

⇒ R(T (x | 0 | 0 | . . . | 0)) ≺ R(T (y | 0 | 0 | . . . | 0))
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⇒ AR(x | 0 | 0 | . . . | 0) ≺ AR(y | 0 | 0 | . . . | 0)

⇒ Ax ≺ Ay ⇒ S(x) ≺ S(y).

Thus S is a linear preserver of ≺ and hence by Proposition 2.2, A is of the form (i)

or (ii). �

Corollary 2.6. Let T : Mn,m → Mn,m be a linear operator. Then T preserves

row-sum majorization if and only if R(TEij), for every i ∈ Nn and j ∈ Nm, has one

of the following forms:

(i) R(TEij) = a for some a ∈ R
n.

(ii) R(TEij) = (αP + βJ)ei for some α, β ∈ R and P ∈ Pn.

Here, we characterize all linear operators on Mn,m that strongly preserve row-

sum majorization. The following example shows that not every linear operator that

strongly preserves ≺rs, is necessarily invertible.

Example 2.7. Let m > 2 and let T : Mn,m → Mn,m be defined by T (X) = XJ.

Let X,Y ∈ Mn,m. Therefore

T (X) = XJ =











r1(X) . . . r1(X)

r2(X) . . . r2(X)
...

...

rn(X) . . . rn(X)











,

and hence R(TX) = nR(X). Assume that X ≺rs Y , then

X ≺rs Y ⇔ R(X) ≺ R(Y ) ⇔ nR(X) ≺ nR(Y )

⇔ R(TX) ≺ R(TY ) ⇔ T (X) ≺rs T (Y ).

Then T strongly preserves ≺rs. Since m > 2, T (X) = 0 for some X 6= 0, which

implies that T is not invertible.

In [1], [4], the authors characterized the structure of all strong linear preservers

of ≺ on R
n as follows:

Proposition 2.8. Let T : R
n → R

n be a linear operator. Then T strongly pre-

serves classical majorization if and only if there exist α, β ∈ R, and a permutation

matrix P ∈ Pn such that T (x) = αPx+ βJx for all x ∈ R
n and α(α+ nβ) 6= 0.

Theorem 2.9. Let T : Mn,m → Mn,m be a linear operator. Then T strongly

preserves row-sum majorization if and only if there exist α, β ∈ R, P ∈ Pn such that

α(α + nβ) 6= 0 and R(TX) = (αP + βJ)R(X) for all X ∈ Mn,m.
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P r o o f. If R(TX) = (αP + βJ)R(X) for some permutation matrix P ∈ Pn

and α, β ∈ R such that α(α + nβ) 6= 0, then it is clear that T is a strong linear

preserver of row-sum majorization by Proposition 2.8. Conversely, let T strongly

preserve row-sum majorization. By Theorem 2.5, there exists A ∈ Mn such that

R(TX) = AR(X). Now, define S : R
n → R

n by S(x) = Ax. First we show that S

is a strong linear preserver of ≺. Let x ≺ y. Then we have

x ≺ y ⇔ (x | 0 | 0 | . . . | 0) ≺rs (y | 0 | 0 | . . . | 0)

⇔ T (x | 0 | 0 | . . . | 0) ≺rs T (y | 0 | 0 | . . . | 0)

⇔ R(T (x | 0 | 0 | . . . | 0)) ≺ R(T (y | 0 | 0 | . . . | 0))

⇔ AR(x | 0 | 0 | . . . | 0) ≺ AR(y | 0 | 0 | . . . | 0)

⇔ Ax ≺ Ay ⇔ S(x) ≺ S(y).

Thus S is a strong linear preserver of ≺ and by Proposition 2.8, A = αP + βJ for

some P ∈ Pn and α, β ∈ R such that α(α + nβ) 6= 0. �

3. Row-sum even and circulant majorization

In this section we consider the concepts of even and circulant majorization on Rn

and then we characterize the linear and strong linear preservers of row-sum majoriza-

tion of these relations on Mn,m. Here, we give some necessary prerequisites. The

following lemma gives the relation between two vectors x, y ∈ R
n when x ∼e y. This

lemma is used to find the structure of linear preservers of ≺rs
e .

Lemma 3.1. Let x, y ∈ R
n and x ∼e y. Then there exists an even permutation

matrix P ∈ Pn such that x = Py.

P r o o f. Let x, y ∈ R
n and x ∼e y. It is clear that even majorization implies

multivariate majorization, so we have x ∼ y. Therefore there exists a permutation

matrix P ∈ Pn such that x = Py. On the other hand x ≺e y, and by the definition of

even majorization there exists an even doubly stochastic matrix D such that x = Dy.

Since D is even doubly stochastic, there exist even permutations Pi1 , . . . , Pik ∈ Pn

and scalars c1, . . . , ck ∈ R
+ such that

k
∑

i=1

cj = 1 and D =
k
∑

i=1

cjPij . Thus, x =
k
∑

i=1

cjPijy. Without loss of generality assume that c1 6= 0. If c1 = 1, then x = Pi1y

and the assertion holds trivially. If c1 6= 1, put

z =
1

1− c1

k
∑

j=2

cjPijy
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and hence Py = c1Pi1y + (1− c1)z. By the triangle inequality we have

‖y‖ = ‖Py‖ 6 c1‖y‖+ (1 − c1)‖z‖ 6 ‖y‖.

Since equality occures in the triangle inequality, there is a scalar α such that

z = αPi1y. Thus, Py = (c1 + α(1 − c1))Pi1y and this implies that α = 1. Therefore

x = Pi1y, as desired. �

We use the following matrices throughout this section:

P1 = I, P2 =





0 1 0

0 0 1

1 0 0



 , P3 =





0 0 1

1 0 0

0 1 0



 , P ′

1 =





1 0 0

0 0 1

0 1 0



 ,

P ′

2 =





0 0 1

0 1 0

1 0 0



 , P ′

3 =





0 1 0

1 0 0

0 0 1



 .

Here, we mention the structure of all linear preservers of ≺e on R
n.

Proposition 3.2 ([2], Theorem 2.2). Let T : R
n → R

n be a linear operator and

let n > 4. Then T preserves even majorization if and only if one of the following

holds:

(i) T (x) = tr(x)a for some a ∈ R
n.

(ii) T (x) = αPx + βJx for some α, β ∈ R, and a permutation matrix P ∈ Pn.

Proposition 3.3 ([2], Proposition 2.4). Let T : R
3 → R

3 be a linear operator.

Then T preserves even majorization if and only if one of the following holds:

(i) T (x) = tr(x)a for some a ∈ R
3.

(ii) T (x) = αP1x+ βP2x+ γP3x for some α, β, γ ∈ R.

(iii) T (x) = αP ′

1x+ βP ′

2x+ γP ′

3x for some α, β, γ ∈ R.

The next theorem characterizes the structure of all linear operators T : Mn,m →

Mn,m preserving ≺
rs
e .

Theorem 3.4. Let T : Mn,m → Mn,m be a linear operator. Then T preserves

row-sum even majorization if and only if there exists A ∈ Mn such that R(TX) =

AR(X) for all X ∈ Mn,m, and one of the following statements holds:

(a) n > 4, and A has one of the following forms:

(i) A = (a | a | . . . | a) for some a ∈ R
n,

(ii) A = λP + µJ for some λ, µ ∈ R and P ∈ Pn,

(b) n = 3, and A has one of the following forms:

(i) A = (a | a | . . . | a) for some a ∈ R
n,

(ii) A = αP1 + βP2 + γP3 for some α, β, γ ∈ R,

(iii) A = αP ′

1x+ βP ′

2x+ γP ′

3 for some α, β, γ ∈ R.
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P r o o f. First, assume that n > 4 (or n = 3), and there exists A ∈ Mn such

that R(TX) = AR(X) for all X ∈ Mn,m and A has one of the forms (i) or (ii)

of the case (a) (respectively (i) or (ii) or (iii) of the case (b)). Now, let X ≺rs
e Y .

Then R(X) ≺e R(Y ), and it is clear that AR(X) ≺e AR(Y ) by Proposition 3.2

(or Proposition 3.3). Thus R(TX) ≺e R(TY ) and therefore T (X) ≺rs
e T (Y ).

Conversely, assume that T preserves row-sum even majorization and let α =

R(TE11). It is clear that for every i, j (i ∈ Nn, j ∈ Nm), R(Eij) ∼e R(E11),

so R(TEij) = Pijα, for some even permutation Pij ∈ Pn, by Lemma 3.1. Thus

R(TX) =
∑

i,j

xijPijα. We claim that for every i ∈ Nn, Pijα = Pikα for all j, k ∈ Nm.

Assume there exists i ∈ Nn such that Pijα 6= Pikα, for some j, k ∈ Nm. Therefore

α 6= P t
ijPikα. Let X = 2Eij and Y = Eij +Eik. It is clear that X ≺rs

e Y , so we have

TX ≺rs
e TY . Then

TX ≺rs
e TY ⇒ R(TX) ≺e R(TY ) ⇒ 2Pijα ≺e Pijα+ Pikα

⇒ 2α ≺e α+ P t
ijPikα ⇒ 2α ≺ α+ P t

ijPikα,

and by Lemma 2.3, P t
ijPikα = α, which is a contradiction. So Pijα = Pikα for every

i ∈ Nn and j, k ∈ Nm. Set Pi = Pi1 for every i ∈ Nn. So Piα = Pi1α = Pijα for

every j ∈ Nm and hence,

R(TX) =
∑

i,j

xijPijα =

n
∑

i=1

ri(X)Piα.

Put A = [P1α | P2α | . . . | Pnα], therefore R(TX) = AR(X). Now, define S :

R
n → R

n by S(x) = Ax. Now we show that S is a linear preserver of ≺e. Let

x ≺e y. Then

x ≺e y ⇒ (x | 0 | 0 | . . . | 0) ≺rs
e (y | 0 | 0 | . . . | 0)

⇒ T (x | 0 | 0 | . . . | 0) ≺rs
e T (y | 0 | 0 | . . . | 0)

⇒ R(T (x | 0 | 0 | . . . | 0)) ≺e R(T (y | 0 | 0 | . . . | 0))

⇒ AR(x | 0 | 0 | . . . | 0) ≺e AR(y | 0 | 0 | . . . | 0)

⇒ Ax ≺e Ay ⇒ S(x) ≺e S(y).

Thus S is a linear preserver of ≺e and by Proposition 3.2 (or Proposition 3.3) for

n > 4 (or n = 3), the case (a) (or (b)) holds and A is of the form (i) or (ii)

(respectively (i) or (ii) or (iii)), as desired. �

Corollary 3.5. Let T : Mn,m → Mn,m be a linear operator. Then T preserves

row-sum even majorization if and only if for every i ∈ Nn and j ∈ Nm, R(T (Eij))

has one of the following forms:
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(a) n > 4, and one of the following holds:

(i) R(TEij) = a for some a ∈ R
n,

(ii) R(TEij) = (αP + βJ)ei for some α, β ∈ R and P ∈ Pn,

(b) n = 3, and one of the following holds:

(i) R(TEij) = a for some a ∈ R
n,

(ii) R(TEij) = αP1 + βP2 + γP3 for some α, β, γ ∈ R,

(iii) R(TEij) = αP ′

1x+ βP ′

2x+ γP ′

3 for some α, β, γ ∈ R.

The linear operators strongly preserving ≺e on R
n have been characterized as

follows:

Proposition 3.6 ([2], Theorem 2.4). Let T : R
n → R

n be a linear operator and

let n > 4. Then T strongly preserves even majorization if and only if T has the form

T (x) = αPx+ βJx, where P ∈ Pn and α, β ∈ R are such that α(α+ nβ) 6= 0.

Proposition 3.7 ([2], Theorem 2.4). Let T : R
3 → R

3 be a linear operator.

Then T strongly preserves even majorization if and only one of the following holds:

(i) T (x) = αP1x+ βP2x+ γP3x,

(ii) T (x) = αP ′

1x+ βP ′

2x+ γP ′

3x,

where α, β, γ ∈ R with α3 + β3 + γ3 6= 3αβγ.

The following example shows that in general a linear operator that strongly pre-

serves ≺rs
e is not invertible.

Example 3.8. Let T : Mn,m → Mn,m be defined by T (X) = XJ. Then T

strongly preserves row-sum even majorization but is not invertible.

Theorem 3.9. Let T : Mn,m → Mn,m be a linear operator. Then T strongly

preserves row-sum even majorization if and only if there exists A ∈ Mn such that

R(TX) = AR(X) for all X ∈ Mn,m, and one of the following holds:

(i) n > 4, and A = αP + βJ for some permutation matrix P ∈ Pn and α, β ∈ R;

(ii) n = 3, and A = αP1 + βP2 + γP3 or A = αP ′

1 + βP ′

2 + γP ′

3 for some α, β, γ ∈ R

such that α3 + β3 + γ3 6= 3αβγ.

P r o o f. The sufficiency is clear by Propositions 3.6 and 3.7. So, we only prove

the necessity. Let T strongly preserve row-sum even majorization. By Theorem 3.4,

there exist A ∈ Mn, such that R(TX) = AR(X). Now, define S : R
n → R

n by

S(x) = Ax. Here, we show that S is a strong linear preserver of ≺e. Let x ≺e y.

Then

x ≺e y ⇔ (x | 0 | 0 | . . . | 0) ≺rs
e (y | 0 | 0 | . . . | 0)

⇔ T (x | 0 | 0 | . . . | 0) ≺rs
e T (y | 0 | 0 | . . . | 0)

⇔ R(T (x | 0 | 0 | . . . | 0)) ≺e R(T (y | 0 | 0 | . . . | 0))
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⇔ AR(x | 0 | 0 | . . . | 0) ≺e AR(y | 0 | 0 | . . . | 0)

⇔ Ax ≺e Ay ⇔ S(x) ≺e S(y).

Thus S is a strong linear preserver of ≺e. If n > 4, by Proposition 3.6, A is of the

form (i). If n = 3, by Proposition 3.7, A is of the form (ii), as desired. �

In the remainder of the paper we consider the circulant majorization and we find

the linear operator preserving row-sum circulant majorization on Mn,m. The follow-

ing proposition characterizes the linear operators preserving circulant majorization

on R
n.

Proposition 3.10 ([2], Theorem 2.6). Let T : R
n → R

n be a linear operator.

Then T preserves circulant majorization if and only if there exist a vector a ∈ R
n

and an integer k ∈ Nn, such that Tx = (a | Qka | . . . | Qn−1
k a)x for all x ∈ R

n.

Lemma 3.11 ([2], Lemma 2.1). Let x, y ∈ R
n and x ∼c y. Then there exists

a circulant permutation matrix P ∈ Pn such that x = Py.

By using Proposition 3.10, Lemma 3.11 and arguments similar to those used in

the proofs of Theorems 3.4 and 3.9 we can prove the following results.

Theorem 3.12. A linear operator T : Mn,m → Mn,m preserves row-sum circulant

majorization if and only if there exist a vector a ∈ R
n and an integer k ∈ Nn, such

that for all X ∈ Mn,m,

R(TX) = (a | Qka | . . . | Qn−1
k a)R(X).

Corollary 3.13. Let T : Mn,m → Mn,m be a linear operator. Then T preserves

row-sum circulant majorization if and only if for every i ∈ Nn and j ∈ Nm, there

exist a vector a ∈ R
n and an integer k ∈ Nn, such that R(T (Eij)) = (a | Qka | . . . |

Qn−1
k a)ei.

In the following theorems, (α0, . . . , αn−1)
t is the first column of the matrix A and

ε = e2πi/n. The strong linear preservers of ≺c and ≺rs
c are as follows:

Proposition 3.14 ([2], Theorem 2.8). Let T : R
n → R

n be a linear operator.

Then T strongly preserves circulant majorization if and only if there exists a matrix

A ∈ Mn such that Tx = Ax for all x ∈ R
n, and AQ1 = QkA for some k ∈ Nn and

n−1
∏

l=0

(n−1
∑

k=0

εklαk

)

6= 0 .
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By using Proposition 3.14 and applying the arguments used in the previous results

we can obtain the following theorem.

Theorem 3.15. Let T : Mn,m → Mn,m be a linear operator. Then T strongly

preserves row-sum circulant majorization if and only if there exist a matrix A ∈ Mn

and an integer k ∈ Nn such that AQ1 = QkA and
n−1
∏

l=0

(n−1
∑

k=0

εklαk

)

6= 0 and R(TX) =

AR(X) for all X ∈ Mn,m.
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