Associated primes of local cohomology modules of generalized Laskerian modules.
(English).Czechoslovak Mathematical Journal,
vol. 69
(2019),
issue 4,
pp. 1101-1109
Keywords: associated prime ideals; Grothendieck spectral sequence; local cohomology module; semiprime closure operation
Summary: Let $\mathcal I$ be a set of ideals of a commutative Noetherian ring $R$. We use the notion of $\mathcal I$-closure operation which is a semiprime closure operation on submodules of modules to introduce the class of $\mathcal I$-Laskerian modules. This enables us to investigate the set of associated prime ideals of certain $\mathcal I$-closed submodules of local cohomology modules.
[2] Brodmann, M. P., Sharp, R. Y.: Local Cohomology. An Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge (1998). DOI 10.1017/CBO9780511629204 | MR 1613627 | Zbl 0903.13006
[7] Huneke, C.: Problems on local cohomology. Free Resolutions in Commutative Algebra and Algebraic Geometry Research Notes in Mathematics 2, Jones and Bartlett Publishers, Boston (1992), 93-108. MR 1165320 | Zbl 0782.13015