[1] Adams R. A.:
Sobolev Spaces. Pure and Applied Mathematics, 65, Academic Press, New York, 1975.
MR 0450957 |
Zbl 1098.46001
[2] Afrouzi G. A., Graef J. R., Shokooh S.:
Multiple solutions for Neumann systems in an Orlicz–Sobolev space setting. Miskolc Math. Notes 18 (2017), no. 1, 31–45.
DOI 10.18514/MMN.2017.1906 |
MR 3669881
[3] Afrouzi G. A., Heidarkhani S., Shokooh S.:
Infinitely many solutions for Steklov problems associated to non-homogeneous differential operators through Orlicz–Sobolev spaces. Complex Var. Elliptic Equ. 60 (2015), no. 11, 1505–1521.
MR 3393865
[4] Afrouzi G. A., Rădulescu V., Shokooh S.:
Multiple solutions of Neumann problems: an Orlicz–Sobolev space setting. Bull. Malays. Math. Sci. Soc. 40 (2017), no. 4, 1591–1611.
DOI 10.1007/s40840-015-0153-x |
MR 3712573
[6] Bonanno G., Bisci G. M., Rădulescu V.:
Existence of three solutions for a non-homogeneous Neumann problem through Orlicz–Sobolev spaces. Nonlinear Anal. 74 (2011), no. 14, 4785–4795.
DOI 10.1016/j.na.2011.04.049 |
MR 2810717
[7] Bonanno G., Bisci G. M., Rădulescu V.:
Infinitely many solutions for a class of nonlinear eigenvalue problem in Orlicz–Sobolev spaces. C. R. Math. Acad. Sci. Paris 349 (2011), no. 5–6, 263–268.
DOI 10.1016/j.crma.2011.02.009 |
MR 2783317
[8] Bonanno G., Bisci G. M., Rădulescu V.:
Arbitrarily small weak solutions for a nonlinear eigenvalue problem in Orlicz–Sobolev spaces. Monatsh. Math. 165 (2012), no. 3–4, 305–318.
DOI 10.1007/s00605-010-0280-2 |
MR 2891255
[9] Bonanno G., Bisci G. M., Rădulescu V.:
Quasilinear elliptic non-homogeneous Dirichlet problems through Orlicz–Sobolev spaces. Nonlinear Anal. 75 (2012), no. 12, 4441–4456.
DOI 10.1016/j.na.2011.12.016 |
MR 2927113
[10] Bonanno G., Candito P.:
Infinitely many solutions for a class of discrete non-linear boundary value problems. Appl. Anal. 88 (2009), no. 4, 605–616.
DOI 10.1080/00036810902942242 |
MR 2541143
[11] Bonanno G., Di Bella B.:
Infinitely many solutions for a fourth-order elastic beam equation. NoDEA Nonlinear Differential Equations Appl. 18 (2011), no. 3, 357–368.
DOI 10.1007/s00030-011-0099-0 |
MR 2811057
[13] Clément Ph., de Pagter B., Sweers G., de Thélin F.:
Existence of solutions to a semilinear elliptic system through Orlicz–Sobolev spaces. Mediterr. J. Math. 1 (2004), no. 3, 241–267.
DOI 10.1007/s00009-004-0014-6 |
MR 2094464
[14] D'Aguì G., Sciammetta A.:
Infinitely many solutions to elliptic problems with variable exponent and nonhomogeneous Neumann conditions. Nonlinear Anal. 75 (2012), no. 14, 5612–5619.
DOI 10.1016/j.na.2012.05.009 |
MR 2942940
[15] Diening L.:
Maximal function on Musielak–Orlicz spaces and generalized Lebesgue spaces. Bull. Sci. Math. 129 (2005), no. 8, 657–700.
MR 2166733
[17] Fan X., Zhao D.:
On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$. J. Math. Anal. Appl. 263 (2001), no. 2, 424–446.
MR 1866056
[20] Kováčik O., Rákosník J.:
On spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$. Czechoslovak Math. J. 41 (1991), no. 4, 592–618.
MR 1134951
[21] Kristály A., Mihăilescu M., Rădulescu V.:
Two non-trivial solutions for a non-homogeneous Neumann problem: an Orlicz–Sobolev space setting. Proc. Roy. Soc. Edinburgh Sect. A 139 (2009), no. 2, 367–379.
MR 2496969
[22] Mihăilescu M., Rădulescu V.:
Eigenvalue problems associated with nonhomogeneous differential operators in Orlicz–Sobolev spaces. Anal. Appl. (Singap.) 6 (2008), no. 1, 83–98.
DOI 10.1142/S0219530508001067 |
MR 2380887
[23] Mihăilescu M., Rădulescu V.:
Neumann problems associated to nonhomogeneous differential operators in Orlicz–Sobolev space. Ann. Inst. Fourier (Grenoble) 58 (2008), no. 6, 2087–2111.
DOI 10.5802/aif.2407 |
MR 2473630
[24] Musielak J.:
Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, 1034, Springer, Berlin, 1983.
MR 0724434 |
Zbl 0557.46020
[25] Pfeiffer C., Mavroidis C., Cohen Y. B., Dolgin B.: Electrorheological fluid based force feedback device. Conference on Telemanipulator and Telepresence Technologies VI, Part of SPIE's Photonics East, Boston, Proc. 3840 (1999), 88–99.
[26] Rao M. M., Ren Z. D.:
Theory of Orlicz Spaces. Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker, New York. 1991.
MR 1113700 |
Zbl 0724.46032