[1] Albiac F., Kalton N. J.:
Topics in Banach Space Theory. Graduate Texts in Mathematics, 233, Springer, New York, 2006.
MR 2192298 |
Zbl 1094.46002
[4] Bourgain J.:
New classes of $\mathcal{L}^p$-spaces. Lecture Notes in Mathematics, 889, Springer, Berlin, 1981.
MR 0639014
[5] Castillo J. M., Sanchez F.:
Dunford–Pettis-like properties of continuous vector function spaces. Rev. Mat. Univ. Complut. Madrid 6 (1993), no. 1, 43–59.
MR 1245024
[6] Diestel J.:
A survey of results related to the Dunford–Pettis property. Proc. of the Conf. on Integration, Topology, and Geometry in Linear Spaces, Contemp. Math., 2, Amer. Math. Soc., Provicence, 1980, pages 15–60.
MR 0621850
[7] Diestel J.:
Sequences and Series in Banach Spaces. Graduate Texts in Mathematics, 92, Springer, New York, 1984.
MR 0737004
[8] Diestel J., Jarchow H., Tonge A.:
Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995.
MR 1342297 |
Zbl 1139.47021
[9] Diestel J., Uhl J. J. Jr.:
Vector Measures. Mathematical Surveys, 15, American Mathematical Society, Providence, 1977.
MR 0453964 |
Zbl 0521.46035
[10] Emmanuele G.:
A dual characterization of Banach spaces not containing $\ell^1$. Bull. Polish Acad. Sci. Math. 34 (1986), no. 3–4, 155–160.
MR 0861172
[11] Emmanuele G.:
Dominated operators on $C[0,1]$ and the $( CRP)$. Collect. Math. 41 (1990), no. 1, 21–25.
MR 1134442
[12] Emmanuele G.:
On the reciprocal Dunford–Pettis property and projective tensor products. Math. Proc. Cambridge Philos. Soc. 109 (1991), no. 1, 161–166.
DOI 10.1017/S0305004100069632 |
MR 1075128
[14] Emmanuele G., Hensgen W.:
Property $ (V)$ of Pelczyński in projective tensor products. Proc. Roy. Irish Acad. Sect. A 95 (1995), no. 2, 227–231.
MR 1660381
[16] Ghenciu I.:
Property $(wL)$ and the reciprocal Dunford–Pettis property in projective tensor products. Comment. Math. Univ. Carolin. 56 (2015), no. 3, 319–329.
MR 3390279
[19] Ghenciu I., Lewis P.:
The Dunford–Pettis property, the Gelfand-Phillips property, and $L$-sets. Colloq. Math. 106 (2006), no. 2, 311–324.
DOI 10.4064/cm106-2-11 |
MR 2283818
[21] Pełczyński A.:
Banach spaces on which every unconditionally converging operator is weakly compact. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648.
MR 0149295 |
Zbl 0107.32504
[23] Pełczyński A., Semadeni Z.:
Spaces of continuous functions (III). Spaces $C(\Omega)$ for $\Omega$ without perfect subsets. Studia Math. 18 (1959), 211–222.
DOI 10.4064/sm-18-2-211-222 |
MR 0107806
[25] Rosenthal H.:
Point-wise compact subsets of the first Baire class. Amer. J. Math. 99 (1977), no. 2, 362–378.
DOI 10.2307/2373824 |
MR 0438113
[26] Ryan R. A.:
Introduction to Tensor Products of Banach Spaces. Springer Monographs in Mathematics, Springer, London, 2002.
MR 1888309 |
Zbl 1090.46001
[27] Wojtaszczyk P.:
Banach Spaces for Analysts. Cambridge Studies in Advanced Mathematics, 25, Cambridge University Press, Cambridge, 1991.
MR 1144277