Previous |  Up |  Next

Article

Title: Šarkovského věta a diferenciální rovnice III (Czech)
Title: Sharkovsky's Theorem and Differential Equations III (English)
Author: Andres, Jan
Language: Czech
Journal: Pokroky matematiky, fyziky a astronomie
ISSN: 0032-2423
Volume: 64
Issue: 2
Year: 2019
Pages: 91-103
Summary lang: Czech
.
Category: math
.
Summary: Článek je pokračováním našich dřívějších stejnojmenných příspěvků, v nichž jsme vyšetřovali možnosti aplikace různých variant Šarkovského věty o koexistenci periodických bodů a orbit pro intervalová zobrazení na diferenciální rovnice a inkluze. I tentokrát se budeme zabývat stejným problémem, avšak pro zobrazení na kružnici. Na rozdíl od intervalových zobrazení zde totiž mj. nemusí periodické orbity implikovat existenci pevných bodů, což představuje největší překážku. Na druhé straně lze takto rozšířit aplikace o další zajímavé případy. (Czech)
MSC: 37-01
MSC: 37E10
idZBL: Zbl 07675637
.
Date available: 2019-07-25T09:15:38Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/147803
.
Related article: http://dml.cz/handle/10338.dmlcz/141221
Related article: http://dml.cz/handle/10338.dmlcz/141710
.
Reference: [1] Alsedà, L., Llibre, J., Misiurewicz, M.: Combinatorial dynamics and entropy in dimension one.. 2nd ed., World Scientific, Singapore, 2000. MR 1255515
Reference: [2] Andres, J.: Šarkovského věta a diferenciální rovnice.. Pokroky Mat. Fyz. Astronom. 49 (2004), 151–159.
Reference: [3] Andres, J.: Šarkovského věta a diferenciální rovnice, II.. Pokroky Mat. Fyz. Astronom. 56 (2011), 143–149.
Reference: [4] Andres, J.: On the coexistence of irreducible orbits of coincidences for multivalued admissible maps on the circle via Nielsen theory.. Topology Appl. 221 (2017), 596–609. MR 3624487, 10.1016/j.topol.2017.02.071
Reference: [5] Andres, J.: Randomization of Sharkovsky-type results on the circle.. Stoch. Dyn. 17 (2017), 1–21. MR 3628177, 10.1142/S0219493717500174
Reference: [6] Andres, J.: Randomized Sharkovsky-type theorems and their application to random impulsive differential equations and inclusions on tori.. Stoch. Dyn. 19 (2019), 1–30. MR 3994160, 10.1142/S0219493719500369
Reference: [7] Andres, J.: Coexistence of periodic solutions with various periods of impulsive differential equations and inclusions on tori via Poincaré operators.. Topology Appl. 255 (2019), 126–140. MR 3905238, 10.1016/j.topol.2019.01.008
Reference: [8] Andres, J., Bednařík, D., Pastor, K.: On the notion of derivo-periodicity.. J. Math. Anal. Appl. 303 (2005), 405–417. MR 2122225, 10.1016/j.jmaa.2004.08.020
Reference: [9] Andres, J., Fišer, J.: Sharkovsky-type theorems on $S^1$ applicable to differential equations.. Internat. J. Bifur. Chaos. 27 (2017), 1–21. MR 3633422, 10.1142/S0218127417500420
Reference: [10] Andres, J., Górniewicz, L.: Topological fixed point principles for boundary value problems.. Kluwer, Dordrecht, 2003. MR 1998968
Reference: [11] Andres, J., Pastor, K.: Block–Sharkovsky type theorem on the circle applicable to differential equations and inclusions.. Internat. J. Bifur. Chaos 28 (4) (2018), 1850056, 1–11. MR 3798212, 10.1142/S0218127418500566
Reference: [12] Andres, J., Pastor, K.: A multivalued version of the Block–Sharkovsky theorem applicable to differential equations on the circle.. Internat. J. Bifur. Chaos 28 (11) (2018), 1–15. MR 3868918
Reference: [13] Andres, J., Pastor, K.: Sharp Block–Sharkovsky type theorem for multivalued maps on the circle and its application to differential equations and inclusions.. Internat. J. Bifur. Chaos (2019), v tisku. MR 3997004
Reference: [14] Andres, J., Pastor, K., Šnyrychová, P.: A multivalued version of Sharkovskii’s theorem holds with at most two exceptions.. J. Fixed Point Theory Appl. 2 (2007), 153–170. MR 2336505, 10.1007/s11784-007-0029-2
Reference: [15] Bernhardt, C.: Periodic orbits of continuous mappings of the circle without fixed points.. Ergodic Theory Dynam. Systems 1 (1981), 413–417. MR 0662734, 10.1017/S0143385700001346
Reference: [16] Block, L.: Periods of periodic points of maps of the circle which have a fixed point.. Proc. Amer. Math. Soc. 82 (1981), 481–486. MR 0612745, 10.1090/S0002-9939-1981-0612745-7
Reference: [17] Block, L., Guckenheimer, J., Misiurewicz, M., Young, L.-S.: Periodic points and topological entropy of one-dimensional maps.. In: Nitecki, Z., Robinson, C. (eds.): Global Theory of Dynamical Systems, Lect. Notes in Math. 819, Springer, Berlin, 1980, 18–34. MR 0591173
Reference: [18] Brown, R. F., Furi, M., Górniewicz, L., Jiang, B.: Handbook of topological fixed point theory.. Springer, Berlin, 2005. MR 2170491
Reference: [19] Coddington, E. A., Levinson, N.: Theory of differential equations.. McGraw-Hill, New York, 1955. MR 0069338
Reference: [20] Denjoy, A.: Sur les courbes définies par les équations différentielles à la surface du tore.. J. Math. Pures Appl. 11 (1932), 333–376.
Reference: [21] Efremova, L. S.: Periodičeskije orbity i stěpeň nepreryvnogo otobraženija okružnosti.. Dif. Integr. Urav. (Gor’kii) 2 (1978), 109–115.
Reference: [22] Farkas, M.: Periodic motions.. Springer, Berlin, 1994. MR 1299528
Reference: [23] Hasselblatt, B., Katok, A.: A first course in dynamics: with a panorama of recent developments.. Cambridge Univ. Press, Cambridge, 2003. MR 1995704
Reference: [24] van Kampen, E. R.: The topological transformations of a simple closed curve into itself.. Amer. J. Math. 57 (1935), 142–152. MR 1507062, 10.2307/2372026
Reference: [25] Katok, A., Hasselblatt, B.: Introduction to the modern theory of dynamical systems.. Cambridge Univ. Press, Cambridge, 1995. MR 1326374
Reference: [26] Misiurewicz, M.: Periodic orbits of maps of degree one of a circle.. Ergodic Theory Dynam. Systems 2 (1982), 221–227. MR 0693977, 10.1017/S014338570000153X
Reference: [27] Poincaré, H.: Sur les courbes définies par les équations différentielles (iii).. J. Math. Pures Appl. 1 (1885), 167–244.
Reference: [28] Siegberg, H. W.: Chaotic mappings on ${S}^1$, periods one, two, three imply chaos on ${S}^1$.. In: Proc. Conf. Numerical solutions of nonlinear equations (Bremen, 1980), Lect. Notes in Math. 878, Springer, Berlin, 1981, 351–370. MR 0644337
Reference: [29] Šarkovskij, A. N.: Sosuščestvovanije ciklov nepreryvnogo otobraženija prjamoj v sebja.. Ukrain. Matem. Žurn. 1 (1964), 61–71.
Reference: [30] Zhao, X.: Periodic orbits with least period three on the circle.. Fixed Point Theory Appl. (Article ID 194875) (2008), 1–8. MR 2377542
.

Files

Files Size Format View
PokrokyMFA_64-2019-2_2.pdf 469.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo