[1] Alsedà, L., Llibre, J., Misiurewicz, M.:
Combinatorial dynamics and entropy in dimension one. 2nd ed., World Scientific, Singapore, 2000.
MR 1255515
[2] Andres, J.: Šarkovského věta a diferenciální rovnice. Pokroky Mat. Fyz. Astronom. 49 (2004), 151–159.
[3] Andres, J.: Šarkovského věta a diferenciální rovnice, II. Pokroky Mat. Fyz. Astronom. 56 (2011), 143–149.
[4] Andres, J.:
On the coexistence of irreducible orbits of coincidences for multivalued admissible maps on the circle via Nielsen theory. Topology Appl. 221 (2017), 596–609.
DOI 10.1016/j.topol.2017.02.071 |
MR 3624487
[6] Andres, J.:
Randomized Sharkovsky-type theorems and their application to random impulsive differential equations and inclusions on tori. Stoch. Dyn. 19 (2019), 1–30.
DOI 10.1142/S0219493719500369 |
MR 3994160
[7] Andres, J.:
Coexistence of periodic solutions with various periods of impulsive differential equations and inclusions on tori via Poincaré operators. Topology Appl. 255 (2019), 126–140.
DOI 10.1016/j.topol.2019.01.008 |
MR 3905238
[10] Andres, J., Górniewicz, L.:
Topological fixed point principles for boundary value problems. Kluwer, Dordrecht, 2003.
MR 1998968
[11] Andres, J., Pastor, K.:
Block–Sharkovsky type theorem on the circle applicable to differential equations and inclusions. Internat. J. Bifur. Chaos 28 (4) (2018), 1850056, 1–11.
DOI 10.1142/S0218127418500566 |
MR 3798212
[12] Andres, J., Pastor, K.:
A multivalued version of the Block–Sharkovsky theorem applicable to differential equations on the circle. Internat. J. Bifur. Chaos 28 (11) (2018), 1–15.
MR 3868918
[13] Andres, J., Pastor, K.:
Sharp Block–Sharkovsky type theorem for multivalued maps on the circle and its application to differential equations and inclusions. Internat. J. Bifur. Chaos (2019), v tisku.
MR 3997004
[14] Andres, J., Pastor, K., Šnyrychová, P.:
A multivalued version of Sharkovskii’s theorem holds with at most two exceptions. J. Fixed Point Theory Appl. 2 (2007), 153–170.
DOI 10.1007/s11784-007-0029-2 |
MR 2336505
[17] Block, L., Guckenheimer, J., Misiurewicz, M., Young, L.-S.:
Periodic points and topological entropy of one-dimensional maps. In: Nitecki, Z., Robinson, C. (eds.): Global Theory of Dynamical Systems, Lect. Notes in Math. 819, Springer, Berlin, 1980, 18–34.
MR 0591173
[18] Brown, R. F., Furi, M., Górniewicz, L., Jiang, B.:
Handbook of topological fixed point theory. Springer, Berlin, 2005.
MR 2170491
[19] Coddington, E. A., Levinson, N.:
Theory of differential equations. McGraw-Hill, New York, 1955.
MR 0069338
[20] Denjoy, A.: Sur les courbes définies par les équations différentielles à la surface du tore. J. Math. Pures Appl. 11 (1932), 333–376.
[21] Efremova, L. S.: Periodičeskije orbity i stěpeň nepreryvnogo otobraženija okružnosti. Dif. Integr. Urav. (Gor’kii) 2 (1978), 109–115.
[22] Farkas, M.:
Periodic motions. Springer, Berlin, 1994.
MR 1299528
[23] Hasselblatt, B., Katok, A.:
A first course in dynamics: with a panorama of recent developments. Cambridge Univ. Press, Cambridge, 2003.
MR 1995704
[24] van Kampen, E. R.:
The topological transformations of a simple closed curve into itself. Amer. J. Math. 57 (1935), 142–152.
DOI 10.2307/2372026 |
MR 1507062
[25] Katok, A., Hasselblatt, B.:
Introduction to the modern theory of dynamical systems. Cambridge Univ. Press, Cambridge, 1995.
MR 1326374
[27] Poincaré, H.: Sur les courbes définies par les équations différentielles (iii). J. Math. Pures Appl. 1 (1885), 167–244.
[28] Siegberg, H. W.:
Chaotic mappings on ${S}^1$, periods one, two, three imply chaos on ${S}^1$. In: Proc. Conf. Numerical solutions of nonlinear equations (Bremen, 1980), Lect. Notes in Math. 878, Springer, Berlin, 1981, 351–370.
MR 0644337
[29] Šarkovskij, A. N.: Sosuščestvovanije ciklov nepreryvnogo otobraženija prjamoj v sebja. Ukrain. Matem. Žurn. 1 (1964), 61–71.
[30] Zhao, X.:
Periodic orbits with least period three on the circle. Fixed Point Theory Appl. (Article ID 194875) (2008), 1–8.
MR 2377542