[5] Bendali, A., Dominguez, J. M., Gallic, S.:
A variational approach for the vector potential formulation of the Stokes and Navier-Stokes problems in three-dimensional domains. J. Math. Anal. Appl. 107 (1985), 537-560.
DOI 10.1016/0022-247x(85)90330-0 |
MR 0787732 |
Zbl 0591.35053
[6] Berselli, L. C.:
On a regularity criterion for the solutions to the 3D Navier-Stokes equations. Differ. Integral Equ. 15 (2002), 1129-1137.
MR 1919765 |
Zbl 1034.35087
[13] Leray, J.:
Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math. 63 (1934), 193-248 French \99999JFM99999 60.0726.05.
DOI 10.1007/BF02547354 |
MR 1555394
[14] Lions, P.-L.:
Mathematical Topics in Fluid Mechanics. Vol. 2: Compressible Models. Oxford Lecture Series in Mathematics and Its Applications 10, Clarendon Press, Oxford (1998).
MR 1637634 |
Zbl 0908.76004
[16] Nakao, K., Taniuchi, Y.:
An alternative proof of logarithmically improved Beale-Kato-Majda type extension criteria for smooth solutions to the Navier-Stokes equations. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 176 (2018), 48-55.
DOI 10.1016/j.na.2018.05.018 |
MR 3856717 |
Zbl 1403.35207
[18] Nirenberg, L.:
On elliptic partial differential equations. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 13 (1959), 115-162.
MR 0109940 |
Zbl 0088.07601