[1] Brandts, J., Křížek, M.:
History and future of superconvergence in three-dimensional finite element methods. Finite Element Methods. Three-Dimensional Problems P. Neittaanmäki, M. Křížek GAKUTO International Series. Mathematical Science Applications 15, Gakkotosho, Tokyo (2001), 22-33.
MR 1896264 |
Zbl 0994.65114
[3] Brandts, J., Křížek, M.:
Superconvergence of tetrahedral quadratic finite elements. J. Comput. Math. 23 (2005), 27-36.
MR 2124141 |
Zbl 1072.65137
[4] Chen, C. M.: Optimal points of stresses for the linear tetrahedral element. Nat. Sci. J. Xiangtan Univ. 3 (1980), 16-24 Chinese.
[5] Chen, C. M.: Construction Theory of Superconvergence of Finite Elements. Hunan Science and Technology Press, Changsha (2001), Chinese.
[6] Chen, L.:
Superconvergence of tetrahedral linear finite elements. Int. J. Numer. Anal. Model. 3 (2006), 273-282.
MR 2237882 |
Zbl 1100.65084
[7] J. Douglas, Jr., T. Dupont, M. F. Wheeler:
An $L^{\infty }$ estimate and a superconvergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials. Rev. Franc. Automat. Inform. Rech. Operat., Analyse Numer. 8 (1974), 61-66.
DOI 10.1051/m2an/197408r200611 |
MR 0359358 |
Zbl 0315.65062
[8] Goodsell, G.: Gradient Superconvergence for Piecewise Linear Tetrahedral Finite Elements. Technical Report RAL-90-031, Science and Engineering Research Council, Rutherford Appleton Laboratory (1990).
[12] Kantchev, V., Lazarov, R.:
Superconvergence of the gradient of linear finite elements for 3D Poisson equation. Proc. Int. Symp. Optimal Algorithms B. Sendov Bulgarian Academy of Sciences, Sofia (1986), 172-182.
MR 1171706 |
Zbl 0672.65088
[13] Lin, Q., Yan, N. N.: Construction and Analysis of High Efficient Finite Elements. Hebei University Press, Baoding (1996), Chinese.
[17] Liu, J., Zhu, Q.:
Estimate for the $W^{1,1}$-seminorm of discrete derivative Green's function in three dimensions. J. Hunan Univ. Arts Sci., Nat. Sci. 16 (2004), 1-3 Chinese.
MR 2139634 |
Zbl 1134.35344
[18] Liu, J., Zhu, Q.:
Maximum-norm superapproximation of the gradient for quadratic finite elements in three dimensions. Acta Math. Sci., Ser. A, Chin. Ed. 26 (2006), 458-466 Chinese.
MR 2243664 |
Zbl 1154.65371
[21] Pehlivanov, A.:
Superconvergence of the gradient for quadratic 3D simplex finite elements. Proceedings of the Conference on Numerical Methods and Application Bulgarian Academy of Sciences, Sofia (1989), 362-366.
MR 1027639
[22] Schatz, A. H., Sloan, I. H., Wahlbin, L. B.:
Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point. SIAM J. Numer. Anal. 33 (1996), 505-521.
DOI 10.1137/0733027 |
MR 1388486 |
Zbl 0855.65115
[23] Zhang, Z., Lin, R.:
Locating natural superconvergent points of finite element methods in 3D. Int. J. Numer. Anal. Model. 2 (2005), 19-30.
MR 2112655 |
Zbl 1071.65140
[24] Zhu, Q., Lin, Q.:
Superconvergence Theory of the Finite Element Methods. Hunan Science and Technology Press, Changsha (1989), Chinese.
MR 1200243